These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 34044320)

  • 21. Regenerated Ni-Doped LiCoO
    Zheng Z; Xie D; Liu X; Huang H; Zhang M; Cheng F
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31137-31144. PubMed ID: 38856774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regeneration and characterization of LiNi
    Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z
    Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pre-separation combined with reduction roasting for high-quality recovery of graphite and lithium from spent lithium ion batteries.
    Zhang G; Jiang T; He Y; Wang H; Yuan X
    Waste Manag; 2024 Oct; 187():244-251. PubMed ID: 39074419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Universal Molten Salt Method for Direct Upcycling of Spent Ni-rich Cathode towards Single-crystalline Li-rich Cathode.
    Qin Z; Zhang Y; Luo W; Zhang T; Wang T; Ni L; Wang H; Zhang N; Liu X; Zhou J; Chen G
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202218672. PubMed ID: 37083044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid dissolution and recovery of Li and Co from spent LiCoO
    Patil D; Chikkamath S; Keny S; Tripathi V; Manjanna J
    J Environ Manage; 2020 Feb; 256():109935. PubMed ID: 31818743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery.
    Liu Y; Yu H; Wang Y; Tang D; Qiu W; Li W; Li J
    Waste Manag; 2022 Apr; 143():186-194. PubMed ID: 35272201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topotactic Transformation of Surface Structure Enabling Direct Regeneration of Spent Lithium-Ion Battery Cathodes.
    Jia K; Wang J; Zhuang Z; Piao Z; Zhang M; Liang Z; Ji G; Ma J; Ji H; Yao W; Zhou G; Cheng HM
    J Am Chem Soc; 2023 Apr; 145(13):7288-7300. PubMed ID: 36876987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong Oxidizing Molten Salts for Strengthening Structural Restoration Enabling Direct Regeneration of Spent Layered Cathode.
    Xiao Z; Yang Y; Li Y; He X; Shen J; Ye L; Yu F; Zhang B; Ou X
    Small; 2024 Jun; 20(26):e2309685. PubMed ID: 38238155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of glucose as reductant to recover Co from spent lithium ions batteries.
    Meng Q; Zhang Y; Dong P
    Waste Manag; 2017 Jun; 64():214-218. PubMed ID: 28325708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The auto-oxidative relithiation of spent cathode materials at low temperature environment for efficient and sustainable regeneration.
    Fei Z; Zhang Y; Meng Q; Dong P; Li Y; Fei J; Qi H; Yan J
    J Hazard Mater; 2022 Jun; 432():128664. PubMed ID: 35305413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials.
    Li S; Zhu J
    J Environ Sci (China); 2024 Apr; 138():312-325. PubMed ID: 38135398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.