These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 34044872)
1. Novel molecular biological tools for the efficient expression of fungal lytic polysaccharide monooxygenases in Pichia pastoris. Rieder L; Ebner K; Glieder A; Sørlie M Biotechnol Biofuels; 2021 May; 14(1):122. PubMed ID: 34044872 [TBL] [Abstract][Full Text] [Related]
2. A fast and easy strategy for lytic polysaccharide monooxygenase-cleavable His Kadowaki MAS; Magri S; de Godoy MO; Monclaro AV; Zarattini M; Cannella D Enzyme Microb Technol; 2021 Feb; 143():109704. PubMed ID: 33375972 [TBL] [Abstract][Full Text] [Related]
3. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806 [TBL] [Abstract][Full Text] [Related]
4. Recombinant expression of Thermobifida fusca E7 LPMO in Pichia pastoris and Escherichia coli and their functional characterization. Rodrigues KB; Macêdo JKA; Teixeira T; Barros JS; Araújo ACB; Santos FP; Quirino BF; Brasil BSAF; Salum TFC; Abdelnur PV; Fávaro LCL Carbohydr Res; 2017 Aug; 448():175-181. PubMed ID: 28411891 [TBL] [Abstract][Full Text] [Related]
5. Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing. Tanghe M; Danneels B; Camattari A; Glieder A; Vandenberghe I; Devreese B; Stals I; Desmet T Mol Biotechnol; 2015 Dec; 57(11-12):1010-7. PubMed ID: 26285758 [TBL] [Abstract][Full Text] [Related]
7. Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation. Liu B; Olson Å; Wu M; Broberg A; Sandgren M PLoS One; 2017; 12(12):e0189479. PubMed ID: 29228039 [TBL] [Abstract][Full Text] [Related]
8. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
9. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Patel I; Kracher D; Ma S; Garajova S; Haon M; Faulds CB; Berrin JG; Ludwig R; Record E Biotechnol Biofuels; 2016; 9():108. PubMed ID: 27213015 [TBL] [Abstract][Full Text] [Related]
11. A novel expression system for lytic polysaccharide monooxygenases. Courtade G; Le SB; Sætrom GI; Brautaset T; Aachmann FL Carbohydr Res; 2017 Aug; 448():212-219. PubMed ID: 28291518 [TBL] [Abstract][Full Text] [Related]
12. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Frommhagen M; Westphal AH; van Berkel WJH; Kabel MA Front Microbiol; 2018; 9():1080. PubMed ID: 29896168 [TBL] [Abstract][Full Text] [Related]
13. An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. Agrawal D; Kaur B; Kaur Brar K; Chadha BS Bioresour Technol; 2020 Jul; 308():123257. PubMed ID: 32244131 [TBL] [Abstract][Full Text] [Related]
14. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Eijsink VGH; Petrovic D; Forsberg Z; Mekasha S; Røhr ÅK; Várnai A; Bissaro B; Vaaje-Kolstad G Biotechnol Biofuels; 2019; 12():58. PubMed ID: 30923566 [TBL] [Abstract][Full Text] [Related]
15. PsAA9A, a C1-specific AA9 lytic polysaccharide monooxygenase from the white-rot basidiomycete Pycnoporus sanguineus. Garrido MM; Landoni M; Sabbadin F; Valacco MP; Couto A; Bruce NC; Wirth SA; Campos E Appl Microbiol Biotechnol; 2020 Nov; 104(22):9631-9643. PubMed ID: 32965563 [TBL] [Abstract][Full Text] [Related]
16. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Kont R; Bissaro B; Eijsink VGH; Väljamäe P Nat Commun; 2020 Nov; 11(1):5786. PubMed ID: 33188177 [TBL] [Abstract][Full Text] [Related]
17. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase. Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433 [TBL] [Abstract][Full Text] [Related]
18. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases. Berrin JG; Rosso MN; Abou Hachem M Carbohydr Res; 2017 Aug; 448():155-160. PubMed ID: 28535872 [TBL] [Abstract][Full Text] [Related]
19. An AA9-LPMO containing a CBM1 domain in Aspergillus nidulans is active on cellulose and cleaves cello-oligosaccharides. Jagadeeswaran G; Gainey L; Mort AJ AMB Express; 2018 Oct; 8(1):171. PubMed ID: 30328527 [TBL] [Abstract][Full Text] [Related]