These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 34044936)
1. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization. Vatankhah E; Tadayon M; Ramakrishna S Carbohydr Polym; 2021 Aug; 266():118120. PubMed ID: 34044936 [TBL] [Abstract][Full Text] [Related]
2. All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting. Cao M; Chen Y; Sha J; Xu Y; Chen S; Xu F Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000640 [TBL] [Abstract][Full Text] [Related]
3. Eco-friendly, compact, and cost-efficient triboelectric nanogenerator for renewable energy harvesting and smart motion sensing. Delgado-Alvarado E; Martínez-Castillo J; Morales-González EA; González-Calderón JA; Armendáriz-Alonso EF; Rodríguez-Liñán GM; López-Esparza R; Hernández-Hernández J; Elvira-Hernández EA; Herrera-May AL Heliyon; 2024 Apr; 10(7):e28482. PubMed ID: 38601514 [TBL] [Abstract][Full Text] [Related]
4. An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing. Bai Z; Xu Y; Li J; Zhu J; Gao C; Zhang Y; Wang J; Guo J ACS Appl Mater Interfaces; 2020 Sep; 12(38):42880-42890. PubMed ID: 32847347 [TBL] [Abstract][Full Text] [Related]
5. Nanofiber-Enhanced "Lucky-Bag" Triboelectric Nanogenerator for Efficient Wave Energy Harvesting by Soft-Contact Structure. Luo Y; Li B; Mo L; Ye Z; Shen H; Lu Y; Li S Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014657 [TBL] [Abstract][Full Text] [Related]
6. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Xu J; Zou Y; Nashalian A; Chen J Front Chem; 2020; 8():577327. PubMed ID: 33330365 [TBL] [Abstract][Full Text] [Related]
7. Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. Mi HY; Jing X; Meador MAB; Guo H; Turng LS; Gong S ACS Appl Mater Interfaces; 2018 Sep; 10(36):30596-30606. PubMed ID: 30114352 [TBL] [Abstract][Full Text] [Related]
8. Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations. Wu C; Park JH; Koo B; Chen X; Wang ZL; Kim TW ACS Nano; 2018 Oct; 12(10):9947-9957. PubMed ID: 30272956 [TBL] [Abstract][Full Text] [Related]
9. High-Output Lotus-Leaf-Bionic Triboelectric Nanogenerators Based on 2D MXene for Health Monitoring of Human Feet. Wang L; Xu H; Huang F; Tao X; Ouyang Y; Zhou Y; Mo X Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145008 [TBL] [Abstract][Full Text] [Related]
10. Nanocellulose-based nanogenerators for sensor applications: A review. Lv Q; Ma X; Zhang C; Han J; He S; Liu K; Jiang S Int J Biol Macromol; 2024 Feb; 259(Pt 2):129268. PubMed ID: 38199536 [TBL] [Abstract][Full Text] [Related]
11. Boosting the output performance of triboelectric nanogenerators Wu L; Xue P; Fang S; Gao M; Yan X; Jiang H; Liu Y; Wang H; Liu H; Cheng B Mater Horiz; 2024 Jan; 11(2):341-362. PubMed ID: 37901942 [TBL] [Abstract][Full Text] [Related]
12. A review of material design for high performance triboelectric nanogenerators: performance improvement based on charge generation and charge loss. Li X; Yang Q; Ren D; Li Q; Yang H; Zhang X; Xi Y Nanoscale Adv; 2024 Sep; 6(18):4522-4544. PubMed ID: 39263397 [TBL] [Abstract][Full Text] [Related]
13. High-Output Triboelectric Nanogenerator Achieved through Conductive Layer Strategy for Motion Step Sensing. Zhang Z; Feng Y; Feng M; Wang W; Du C; Zhang L; Li W; Wu Z; Yu T; Wang D ACS Appl Mater Interfaces; 2024 Sep; 16(37):49275-49285. PubMed ID: 39231300 [TBL] [Abstract][Full Text] [Related]
14. Aim high energy conversion efficiency in triboelectric nanogenerators. Yoon HJ; Kwak SS; Kim SM; Kim SW Sci Technol Adv Mater; 2020 Sep; 21(1):683-688. PubMed ID: 33061840 [TBL] [Abstract][Full Text] [Related]
16. Recent Development of Morphology-Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Kumar V; Kumar P; Deka R; Abbas Z; Mobin SM Chem Rec; 2022 Sep; 22(9):e202200067. PubMed ID: 35686889 [TBL] [Abstract][Full Text] [Related]
17. Improved Electrical Output Performance of Cellulose-Based Triboelectric Nanogenerators Enabled by Negative Triboelectric Materials. Wang F; Wang S; Liu Y; Hou T; Wu Z; Qian J; Zhao Z; Wang L; Jia C; Ma S Small; 2024 May; 20(19):e2308195. PubMed ID: 38072819 [TBL] [Abstract][Full Text] [Related]
18. Trap Distribution and Conductivity Synergic Optimization of High-Performance Triboelectric Nanogenerators for Self-Powered Devices. Lv S; Zhang X; Huang T; Yu H; Zhang Q; Zhu M ACS Appl Mater Interfaces; 2021 Jan; 13(2):2566-2575. PubMed ID: 33411491 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the Output of Liquid-Solid Triboelectric Nanogenerators through Surface Roughness Optimization. Zhou Z; Qin H; Cui P; Wang J; Zhang J; Ge Y; Liu H; Feng C; Meng Y; Huang Z; Yang K; Cheng G; Du Z ACS Appl Mater Interfaces; 2024 Jan; 16(4):4763-4771. PubMed ID: 38165822 [TBL] [Abstract][Full Text] [Related]