These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Silva JC; Udangawa RN; Chen J; Mancinelli CD; Garrudo FFF; Mikael PE; Cabral JMS; Ferreira FC; Linhardt RJ Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110291. PubMed ID: 31761240 [TBL] [Abstract][Full Text] [Related]
3. Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration. Fan W; Yuan L; Li J; Wang Z; Chen J; Guo C; Mo X; Yan Z Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110705. PubMed ID: 32204019 [TBL] [Abstract][Full Text] [Related]
4. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application. Karimi S; Bagher Z; Najmoddin N; Simorgh S; Pezeshki-Modaress M Int J Biol Macromol; 2021 Jan; 167():796-806. PubMed ID: 33278440 [TBL] [Abstract][Full Text] [Related]
5. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. Atoufi Z; Kamrava SK; Davachi SM; Hassanabadi M; Saeedi Garakani S; Alizadeh R; Farhadi M; Tavakol S; Bagher Z; Hashemi Motlagh G Int J Biol Macromol; 2019 Oct; 139():1168-1181. PubMed ID: 31419553 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997 [TBL] [Abstract][Full Text] [Related]
8. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Hajiabbas M; Alemzadeh I; Vossoughi M Carbohydr Polym; 2020 Oct; 245():116465. PubMed ID: 32718603 [TBL] [Abstract][Full Text] [Related]
9. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. Liu X; Song S; Huang J; Fu H; Ning X; He Y; Zhang Z J Mater Chem B; 2020 Jul; 8(28):6115-6127. PubMed ID: 32558871 [TBL] [Abstract][Full Text] [Related]
11. Alginate sulfate/ECM composite hydrogel containing electrospun nanofiber with encapsulated human adipose-derived stem cells for cartilage tissue engineering. Najafi R; Chahsetareh H; Pezeshki-Modaress M; Aleemardani M; Simorgh S; Davachi SM; Alizadeh R; Asghari A; Hassanzadeh S; Bagher Z Int J Biol Macromol; 2023 May; 238():124098. PubMed ID: 36948341 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin. Elder S; Roberson JG; Warren J; Lawson R; Young D; Stokes S; Ross MK Molecules; 2022 Jun; 27(12):. PubMed ID: 35744864 [TBL] [Abstract][Full Text] [Related]
13. Chitosan/polycaprolactone multilayer hydrogel: A sustained Kartogenin delivery model for cartilage regeneration. Baharlou Houreh A; Masaeli E; Nasr-Esfahani MH Int J Biol Macromol; 2021 Apr; 177():589-600. PubMed ID: 33610607 [TBL] [Abstract][Full Text] [Related]
14. Electrospinning/3D printing drug-loaded antibacterial polycaprolactone nanofiber/sodium alginate-gelatin hydrogel bilayer scaffold for skin wound repair. Song Y; Hu Q; Liu S; Wang Y; Zhang H; Chen J; Yao G Int J Biol Macromol; 2024 Aug; 275(Pt 1):129705. PubMed ID: 38272418 [TBL] [Abstract][Full Text] [Related]
15. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Yan J; Miao Y; Tan H; Zhou T; Ling Z; Chen Y; Xing X; Hu X Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():274-84. PubMed ID: 27040220 [TBL] [Abstract][Full Text] [Related]
16. Alginate hydrogel-PCL/gelatin nanofibers composite scaffold containing mesenchymal stem cells-derived exosomes sustain release for regeneration of tympanic membrane perforation. Chahsetareh H; Yazdian F; Pezeshki-Modaress M; Aleemardani M; Hassanzadeh S; Najafi R; Simorgh S; Taghdiri Nooshabadi V; Bagher Z; Davachi SM Int J Biol Macromol; 2024 Mar; 262(Pt 2):130141. PubMed ID: 38365150 [TBL] [Abstract][Full Text] [Related]
17. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Qasim M; Le NXT; Nguyen TPT; Chae DS; Park SJ; Lee NY Int J Pharm; 2020 May; 581():119248. PubMed ID: 32240810 [TBL] [Abstract][Full Text] [Related]
18. Effects of Nanoparticle Properties on Kartogenin Delivery and Interactions with Mesenchymal Stem Cells. Almeida B; Wang Y; Shukla A Ann Biomed Eng; 2020 Jul; 48(7):2090-2102. PubMed ID: 31807926 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Nanofibrous PVA/Alginate-Sulfate Substrates for Growth Factor Delivery. Mohammadi S; Ramakrishna S; Laurent S; Shokrgozar MA; Semnani D; Sadeghi D; Bonakdar S; Akbari M J Biomed Mater Res A; 2019 Feb; 107(2):403-413. PubMed ID: 30485631 [TBL] [Abstract][Full Text] [Related]
20. A bi-layered scaffold of a poly(lactic- Ma W; Zhou M; Dong W; Zhao S; Wang Y; Yao J; Liu Z; Han H; Sun D; Zhang M J Mater Chem B; 2021 Sep; 9(36):7492-7505. PubMed ID: 34551047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]