BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 34044946)

  • 21. An overview on alumina-silica-based aerogels.
    Almeida CMR; Ghica ME; Durães L
    Adv Colloid Interface Sci; 2020 Aug; 282():102189. PubMed ID: 32593008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transparent thermal insulation silica aerogels.
    Wang J; Petit D; Ren S
    Nanoscale Adv; 2020 Dec; 2(12):5504-5515. PubMed ID: 36133881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biorefinery Approach for Aerogels.
    Budtova T; Aguilera DA; Beluns S; Berglund L; Chartier C; Espinosa E; Gaidukovs S; Klimek-Kopyra A; Kmita A; Lachowicz D; Liebner F; Platnieks O; Rodríguez A; Navarro LKT; Zou F; Buwalda SJ
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33255498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment.
    Yang Y; Dang B; Wang C; Chen Y; Chen K; Chen X; Li Y; Sun Q
    Carbohydr Polym; 2024 Jan; 323():121392. PubMed ID: 37940285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of polysaccharide - silica hybrid aerogels.
    Horvat G; Pantić M; Knez Ž; Novak Z
    Sci Rep; 2019 Nov; 9(1):16492. PubMed ID: 31712716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manufacturing silica aerogel and cryogel through ambient pressure and freeze drying.
    Di Luigi M; Guo Z; An L; Armstrong JN; Zhou C; Ren S
    RSC Adv; 2022 Jul; 12(33):21213-21222. PubMed ID: 35975055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels.
    Kuang Y; Chen L; Zhai J; Zhao S; Xiao Q; Wu K; Qiao D; Jiang F
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment.
    Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ
    Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellulose-silica aerogels.
    Demilecamps A; Beauger C; Hildenbrand C; Rigacci A; Budtova T
    Carbohydr Polym; 2015 May; 122():293-300. PubMed ID: 25817671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrophobic Cellulose Acetate Aerogels for Thermal Insulation.
    Zhang S; Yang Z; Huang X; Wang J; Xiao Y; He J; Feng J; Xiong S; Li Z
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan Based Aerogels with Low Shrinkage by Chemical Cross-Linking and Supramolecular Interaction.
    Zhang S; Xiao Q; Xiao Y; Li Z; Xiong S; Ding F; He J
    Gels; 2022 Feb; 8(2):. PubMed ID: 35200512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical Cellular Structured Ceramic Nanofibrous Aerogels with Temperature-Invariant Superelasticity for Thermal Insulation.
    Dou L; Zhang X; Cheng X; Ma Z; Wang X; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29056-29064. PubMed ID: 31330101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems.
    Yang Q; Feng S; Guo J; Guan F; Zhang S; Sun J; Zhang Y; Xu Y; Zhang X; Bao D; He J
    Int J Biol Macromol; 2024 Jun; ():133367. PubMed ID: 38945720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Robust-Soft" Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame-Retardant, and Thermal Insulating Properties.
    Yan M; Pan Y; Cheng X; Zhang Z; Deng Y; Lun Z; Gong L; Gao M; Zhang H
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27458-27470. PubMed ID: 34081863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.
    Hayase G; Kanamori K; Abe K; Yano H; Maeno A; Kaji H; Nakanishi K
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9466-71. PubMed ID: 24865571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resistance over 1400 °C.
    Zhang E; Zhang W; Lv T; Li J; Dai J; Zhang F; Zhao Y; Yang J; Li W; Zhang H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20548-20558. PubMed ID: 33877815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-negative-index ceramic aerogels for thermal superinsulation.
    Xu X; Zhang Q; Hao M; Hu Y; Lin Z; Peng L; Wang T; Ren X; Wang C; Zhao Z; Wan C; Fei H; Wang L; Zhu J; Sun H; Chen W; Du T; Deng B; Cheng GJ; Shakir I; Dames C; Fisher TS; Zhang X; Li H; Huang Y; Duan X
    Science; 2019 Feb; 363(6428):723-727. PubMed ID: 30765563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
    Feng J; Wang X; Jiang Y; Du D; Feng J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12992-6. PubMed ID: 27149155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing Cellulose Diacetate Aerogels with Pearl-Necklace-like Skeleton Networking Structure.
    Xiong S; Hu Y; Zhang S; Xiao Y; Li Z
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.