These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34044958)

  • 1. Structural changes of bacterial cellulose due to incubation in conditions simulating human plasma in the presence of selected pathogens.
    Dederko-Kantowicz P; Sommer A; Staroszczyk H
    Carbohydr Polym; 2021 Aug; 266():118153. PubMed ID: 34044958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants.
    Osorio M; Cañas A; Puerta J; Díaz L; Naranjo T; Ortiz I; Castro C
    Sci Rep; 2019 Jul; 9(1):10553. PubMed ID: 31332259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine.
    Wiegand C; Moritz S; Hessler N; Kralisch D; Wesarg F; Müller FA; Fischer D; Hipler UC
    J Mater Sci Mater Med; 2015 Oct; 26(10):245. PubMed ID: 26411441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E
    Kołaczkowska M; Siondalski P; Kowalik MM; Pęksa R; Długa A; Zając W; Dederko P; Kołodziejska I; Malinowska-Pańczyk E; Sinkiewicz I; Staroszczyk H; Śliwińska A; Stanisławska A; Szkodo M; Pałczyńska P; Jabłoński G; Borman A; Wilczek P
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():302-312. PubMed ID: 30678915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms.
    Sharma C; Bhardwaj NK
    Int J Biol Macromol; 2019 Jul; 132():166-177. PubMed ID: 30928367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Bacterial Nanocellulose Properties through Tailored Downstream Techniques.
    Da Silva Pereira EH; Mojicevic M; Tas CE; Lanzagorta Garcia E; Brennan Fournet M
    Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering.
    Osorio M; Ortiz I; Gañán P; Naranjo T; Zuluaga R; van Kooten TG; Castro C
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():697-705. PubMed ID: 30948106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward biomanufacturing of next-generation bacterial nanocellulose (BNC)-based materials with tailored properties: A review on genetic engineering approaches.
    Núñez D; Oyarzún P; González S; Martínez I
    Biotechnol Adv; 2024 Sep; 74():108390. PubMed ID: 38823654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases.
    Hu Y; Catchmark JM
    Acta Biomater; 2011 Jul; 7(7):2835-45. PubMed ID: 21459165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of antiseptic solutions by a bacterial cellulose wound dressing: Uptake, release and antibacterial efficacy of octenidine and povidone-iodine.
    Bernardelli de Mattos I; Nischwitz SP; Tuca AC; Groeber-Becker F; Funk M; Birngruber T; Mautner SI; Kamolz LP; Holzer JCJ
    Burns; 2020 Jun; 46(4):918-927. PubMed ID: 31653329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.