These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34045472)

  • 21. Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease.
    Wright GEB; Caron NS; Ng B; Casal L; Casazza W; Xu X; Ooi J; Pouladi MA; Mostafavi S; Ross CJD; Hayden MR
    Hum Mol Genet; 2020 Sep; 29(16):2788-2802. PubMed ID: 32898862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa.
    Tong C; Wang X; Yu J; Wu J; Li W; Huang J; Dong C; Hua W; Liu S
    BMC Genomics; 2013 Oct; 14():689. PubMed ID: 24098974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
    Jose V; Fumagalli D; Rothé F; Majjaj S; Loi S; Michiels S; Sotiriou C
    PLoS One; 2018; 13(8):e0203346. PubMed ID: 30169535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene communities in co-expression networks across different tissues.
    Russell M; Aqi A; Saitou M; Gokcumen O; Masuda N
    ArXiv; 2023 Dec; ():. PubMed ID: 37292479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep.
    Zhao B; Luo H; He J; Huang X; Chen S; Fu X; Zeng W; Tian Y; Liu S; Li CJ; Liu GE; Fang L; Zhang S; Tian K
    BMC Biol; 2021 Sep; 19(1):197. PubMed ID: 34503498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.
    Nam S
    OMICS; 2017 Apr; 21(4):217-224. PubMed ID: 28388297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues.
    Palmer D; Fabris F; Doherty A; Freitas AA; de Magalhães JP
    Aging (Albany NY); 2021 Feb; 13(3):3313-3341. PubMed ID: 33611312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated genomic and metabolomic framework for cell wall biology in rice.
    Guo K; Zou W; Feng Y; Zhang M; Zhang J; Tu F; Xie G; Wang L; Wang Y; Klie S; Persson S; Peng L
    BMC Genomics; 2014 Jul; 15(1):596. PubMed ID: 25023612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrative analysis of regional gene expression profiles in the human brain.
    Myers EM; Bartlett CW; Machiraju R; Bohland JW
    Methods; 2015 Feb; 73():54-70. PubMed ID: 25524419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The regulatory genome constrains protein sequence evolution: implications for the search for disease-associated genes.
    Evans P; Cox NJ; Gamazon ER
    PeerJ; 2020; 8():e9554. PubMed ID: 32765967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
    Colak D; Nofal A; Albakheet A; Nirmal M; Jeprel H; Eldali A; Al-Tweigeri T; Tulbah A; Ajarim D; Malik OA; Inan MS; Kaya N; Park BH; Bin Amer SM
    PLoS One; 2013; 8(5):e63204. PubMed ID: 23704896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Network methods for describing sample relationships in genomic datasets: application to Huntington's disease.
    Oldham MC; Langfelder P; Horvath S
    BMC Syst Biol; 2012 Jun; 6():63. PubMed ID: 22691535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types.
    Lu T; Mar JC
    Biol Sex Differ; 2020 Nov; 11(1):61. PubMed ID: 33153500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-network approach to identify differentially methylated gene communities in cancer.
    R V; Nazeer KAA
    Gene; 2019 May; 697():227-237. PubMed ID: 30797996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease.
    Talwar P; Silla Y; Grover S; Gupta M; Agarwal R; Kushwaha S; Kukreti R
    BMC Genomics; 2014 Mar; 15(1):199. PubMed ID: 24628925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.
    Li B; Ritchie MD
    Front Genet; 2021; 12():713230. PubMed ID: 34659337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.
    Liu N; Xu J; Liu H; Zhang S; Li M; Zhou Y; Qin W; Li MJ; Yu C;
    PLoS Genet; 2021 Feb; 17(2):e1009363. PubMed ID: 33630843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
    Snelling WM; Cushman RA; Keele JW; Maltecca C; Thomas MG; Fortes MR; Reverter A
    J Anim Sci; 2013 Feb; 91(2):537-52. PubMed ID: 23097404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks.
    Klein HU; Schäfer M; Bennett DA; Schwender H; De Jager PL
    PLoS Comput Biol; 2020 Apr; 16(4):e1007771. PubMed ID: 32255787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.