These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34045614)

  • 1. Kernel weighted least square approach for imputing missing values of metabolomics data.
    Kumar N; Hoque MA; Sugimoto M
    Sci Rep; 2021 May; 11(1):11108. PubMed ID: 34045614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. rMisbeta: A robust missing value imputation approach in transcriptomics and metabolomics data.
    Shahjaman M; Rahman MR; Islam T; Auwul MR; Moni MA; Mollah MNH
    Comput Biol Med; 2021 Nov; 138():104911. PubMed ID: 34634637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data.
    Xu J; Wang Y; Xu X; Cheng KK; Raftery D; Dong J
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic Biomarker Identification in Presence of Outliers and Missing Values.
    Kumar N; Hoque MA; Shahjaman M; Islam SM; Mollah MN
    Biomed Res Int; 2017; 2017():2437608. PubMed ID: 28293630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies.
    Wei R; Wang J; Jia E; Chen T; Ni Y; Jia W
    PLoS Comput Biol; 2018 Jan; 14(1):e1005973. PubMed ID: 29385130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NS-kNN: a modified k-nearest neighbors approach for imputing metabolomics data.
    Lee JY; Styczynski MP
    Metabolomics; 2018 Nov; 14(12):153. PubMed ID: 30830437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust volcano plot: identification of differential metabolites in the presence of outliers.
    Kumar N; Hoque MA; Sugimoto M
    BMC Bioinformatics; 2018 Apr; 19(1):128. PubMed ID: 29642836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data.
    Wei R; Wang J; Su M; Jia E; Chen S; Chen T; Ni Y
    Sci Rep; 2018 Jan; 8(1):663. PubMed ID: 29330539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics.
    Dekermanjian JP; Shaddox E; Nandy D; Ghosh D; Kechris K
    BMC Bioinformatics; 2022 May; 23(1):179. PubMed ID: 35578165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution based nearest neighbor imputation for truncated high dimensional data with applications to pre-clinical and clinical metabolomics studies.
    Shah JS; Rai SN; DeFilippis AP; Hill BG; Bhatnagar A; Brock GN
    BMC Bioinformatics; 2017 Feb; 18(1):114. PubMed ID: 28219348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study.
    Kokla M; Virtanen J; Kolehmainen M; Paananen J; Hanhineva K
    BMC Bioinformatics; 2019 Oct; 20(1):492. PubMed ID: 31601178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BayesMetab: treatment of missing values in metabolomic studies using a Bayesian modeling approach.
    Shah J; Brock GN; Gaskins J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 24):673. PubMed ID: 31861984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Missing value imputation for microarray data: a comprehensive comparison study and a web tool.
    Chiu CC; Chan SY; Wang CC; Wu WS
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S12. PubMed ID: 24565220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. imputomics: web server and R package for missing values imputation in metabolomics data.
    Chilimoniuk J; Grzesiak K; Kała J; Nowakowski D; Krętowski A; Kolenda R; Ciborowski M; Burdukiewicz M
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38377398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale variational autoencoder for imputation of missing values in untargeted metabolomics using whole-genome sequencing data.
    Zhao C; Su KJ; Wu C; Cao X; Sha Q; Li W; Luo Z; Qing T; Qiu C; Zhao LJ; Liu A; Jiang L; Zhang X; Shen H; Zhou W; Deng HW
    Comput Biol Med; 2024 Sep; 179():108813. PubMed ID: 38955127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm.
    Wu WS; Jhou MJ
    BMC Bioinformatics; 2017 Jan; 18(1):31. PubMed ID: 28086746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
    Liao SG; Lin Y; Kang DD; Chandra D; Bon J; Kaminski N; Sciurba FC; Tseng GC
    BMC Bioinformatics; 2014 Nov; 15(1):346. PubMed ID: 25371041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced methods for missing values imputation based on similarity learning.
    Fouad KM; Ismail MM; Azar AT; Arafa MM
    PeerJ Comput Sci; 2021; 7():e619. PubMed ID: 34395861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies.
    Do KT; Wahl S; Raffler J; Molnos S; Laimighofer M; Adamski J; Suhre K; Strauch K; Peters A; Gieger C; Langenberg C; Stewart ID; Theis FJ; Grallert H; Kastenmüller G; Krumsiek J
    Metabolomics; 2018 Sep; 14(10):128. PubMed ID: 30830398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid imputation approach for microarray missing value estimation.
    Li H; Zhao C; Shao F; Li GZ; Wang X
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S1. PubMed ID: 26330180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.