These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34046051)
1. Integrated Gene Co-expression Analysis and Metabolites Profiling Highlight the Important Role of ZmHIR3 in Maize Resistance to Sun Y; Ruan X; Wang Q; Zhou Y; Wang F; Ma L; Wang Z; Gao X Front Plant Sci; 2021; 12():664733. PubMed ID: 34046051 [No Abstract] [Full Text] [Related]
2. Coronatine-Induced Maize Defense against Liu M; Sui Y; Yu C; Wang X; Zhang W; Wang B; Yan J; Duan L J Fungi (Basel); 2023 Nov; 9(12):. PubMed ID: 38132756 [TBL] [Abstract][Full Text] [Related]
3. Multi-Omics Analysis Reveals a Regulatory Network of ZmCCT During Maize Resistance to Gibberella Stalk Rot at the Early Stage. Tang B; Zhang Z; Zhao X; Xu Y; Wang L; Chen XL; Wang W Front Plant Sci; 2022; 13():917493. PubMed ID: 35812937 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
5. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. Yuan G; Shi J; Zeng C; Shi H; Yang Y; Zhang C; Ma T; Wu M; Jia Z; Du J; Zou C; Ma L; Pan G; Shen Y BMC Genomics; 2024 Jul; 25(1):733. PubMed ID: 39080512 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome and Oxylipin Profiling Joint Analysis Reveals Opposite Roles of 9-Oxylipins and Jasmonic Acid in Maize Resistance to Gibberella Stalk Rot. Wang Q; Sun Y; Wang F; Huang PC; Wang Y; Ruan X; Ma L; Li X; Kolomiets MV; Gao X Front Plant Sci; 2021; 12():699146. PubMed ID: 34557211 [TBL] [Abstract][Full Text] [Related]
7. Genome-Wide Characterization of Jasmonates Signaling Components Reveals the Essential Role of ZmCOI1a-ZmJAZ15 Action Module in Regulating Maize Immunity to Gibberella Stalk Rot. Ma L; Sun Y; Ruan X; Huang PC; Wang S; Li S; Zhou Y; Wang F; Cao Y; Wang Q; Wang Z; Kolomiets MV; Gao X Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467172 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by Zhang X; Zheng S; Yu M; Xu C; Li Y; Sun L; Hu G; Yang J; Qiu X Plant Dis; 2024 Feb; 108(2):348-358. PubMed ID: 37443398 [TBL] [Abstract][Full Text] [Related]
9. Comparative Proteomic Analysis of the Defense Response to Bai H; Si H; Zang J; Pang X; Yu L; Cao H; Xing J; Zhang K; Dong J Front Plant Sci; 2021; 12():694973. PubMed ID: 34489999 [No Abstract] [Full Text] [Related]
10. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling. Cao Y; Wang Y; Gui C; Nguvo KJ; Ma L; Wang Q; Shen Q; Zhang R; Gao X Mol Plant Microbe Interact; 2023 Aug; 36(8):516-528. PubMed ID: 37188493 [TBL] [Abstract][Full Text] [Related]
11. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
13. Identification, Mapping, and Molecular Marker Development for Chen Q; Song J; Du WP; Xu LY; Jiang Y; Zhang J; Xiang XL; Yu GR Front Plant Sci; 2017; 8():1355. PubMed ID: 28824686 [TBL] [Abstract][Full Text] [Related]
14. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. Wang C; Yang Q; Wang W; Li Y; Guo Y; Zhang D; Ma X; Song W; Zhao J; Xu M New Phytol; 2017 Sep; 215(4):1503-1515. PubMed ID: 28722229 [TBL] [Abstract][Full Text] [Related]
15. A major QTL for resistance to Gibberella stalk rot in maize. Yang Q; Yin G; Guo Y; Zhang D; Chen S; Xu M Theor Appl Genet; 2010 Aug; 121(4):673-87. PubMed ID: 20401458 [TBL] [Abstract][Full Text] [Related]
16. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance. Zuo N; Bai WZ; Wei WQ; Yuan TL; Zhang D; Wang YZ; Tang WH Cell Rep; 2022 Dec; 41(13):111877. PubMed ID: 36577386 [TBL] [Abstract][Full Text] [Related]
17. Mapping and Validation of a Stable Quantitative Trait Locus Conferring Maize Resistance to Gibberella Ear Rot. Zhou G; Li S; Ma L; Wang F; Jiang F; Sun Y; Ruan X; Cao Y; Wang Q; Zhang Y; Fan X; Gao X Plant Dis; 2021 Jul; 105(7):1984-1991. PubMed ID: 33616427 [TBL] [Abstract][Full Text] [Related]
18. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Association Study Discovers Novel Germplasm Resources and Genetic Loci with Resistance to Gibberella Ear Rot Caused by Yuan G; He D; Shi J; Li Y; Yang Y; Du J; Zou C; Ma L; Gao S; Pan G; Shen Y Phytopathology; 2023 Jul; 113(7):1317-1324. PubMed ID: 36721376 [TBL] [Abstract][Full Text] [Related]
20. Identification of Pathogens and Evaluation of Resistance and Genetic Diversity of Maize Inbred Lines to Stalk Rot in Heilongjiang Province, China. Liu J; Han Y; Li W; Qi T; Zhang J; Li Y Plant Dis; 2023 Feb; 107(2):288-297. PubMed ID: 35815956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]