These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34046676)

  • 1. Concurrent starch accumulation in stump and high fruit production in coffee (Coffea arabica).
    Cambou A; Thaler P; Clément-Vidal A; Barthès BG; Charbonnier F; Van den Meersche K; Aguilar Vega ME; Avelino J; Davrieux F; Labouisse JP; de Melo Virginio Filho E; Deleporte P; Brunet D; Lehner P; Roupsard O
    Tree Physiol; 2021 Dec; 41(12):2308-2325. PubMed ID: 34046676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field.
    Vaast P; Angrand J; Franck N; Dauzat J; Génard M
    Tree Physiol; 2005 Jun; 25(6):753-60. PubMed ID: 15805095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica.
    Franck N; Vaast P; Génard M; Dauzat J
    Tree Physiol; 2006 Apr; 26(4):517-25. PubMed ID: 16414930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development.
    Geromel C; Ferreira LP; Guerreiro SM; Cavalari AA; Pot D; Pereira LF; Leroy T; Vieira LG; Mazzafera P; Marraccini P
    J Exp Bot; 2006; 57(12):3243-58. PubMed ID: 16926239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits.
    Geromel C; Ferreira LP; Davrieux F; Guyot B; Ribeyre F; Brígida dos Santos Scholz M; Protasio Pereira LF; Vaast P; Pot D; Leroy T; Androcioli Filho A; Esteves Vieira LG; Mazzafera P; Marraccini P
    Plant Physiol Biochem; 2008; 46(5-6):569-79. PubMed ID: 18420417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development.
    Ivamoto ST; Sakuray LM; Ferreira LP; Kitzberger CSG; Scholz MBS; Pot D; Leroy T; Vieira LGE; Domingues DS; Pereira LFP
    Plant Physiol Biochem; 2017 Feb; 111():340-347. PubMed ID: 28002787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea Arabica L. cv. Catimor) harvested from north-eastern Thailand.
    Somporn C; Kamtuo A; Theerakulpisut P; Siriamornpun S
    J Sci Food Agric; 2012 Jul; 92(9):1956-63. PubMed ID: 22252511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of shade on Arabica coffee berry disease development: Toward an agroforestry system to reduce disease impact.
    Mouen Bedimo JA; Njiayouom I; Bieysse D; Ndoumbè Nkeng M; Cilas C; Nottéghem JL
    Phytopathology; 2008 Dec; 98(12):1320-5. PubMed ID: 19000007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.
    Defrenet E; Roupsard O; Van den Meersche K; Charbonnier F; Pastor Pérez-Molina J; Khac E; Prieto I; Stokes A; Roumet C; Rapidel B; de Melo Virginio Filho E; Vargas VJ; Robelo D; Barquero A; Jourdan C
    Ann Bot; 2016 Oct; 118(4):833-851. PubMed ID: 27551026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits.
    Yuyama PM; Reis Júnior O; Ivamoto ST; Domingues DS; Carazzolle MF; Pereira GA; Charmetant P; Leroy T; Pereira LF
    Mol Genet Genomics; 2016 Feb; 291(1):323-36. PubMed ID: 26334613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis.
    Privat I; Foucrier S; Prins A; Epalle T; Eychenne M; Kandalaft L; Caillet V; Lin C; Tanksley S; Foyer C; Mccarthy J
    New Phytol; 2008; 178(4):781-797. PubMed ID: 18384509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars.
    Mofatto LS; Carneiro Fde A; Vieira NG; Duarte KE; Vidal RO; Alekcevetch JC; Cotta MG; Verdeil JL; Lapeyre-Montes F; Lartaud M; Leroy T; De Bellis F; Pot D; Rodrigues GC; Carazzolle MF; Pereira GA; Andrade AC; Marraccini P
    BMC Plant Biol; 2016 Apr; 16():94. PubMed ID: 27095276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanisms and prediction of non-structural carbohydrates accretion and depletion after mechanical wounding in slash pine (Pinus elliottii) using near-infrared reflectance spectroscopy.
    Li Y; Sun H; de Paula Protásio T; Hein PRG; Du B
    Plant Methods; 2022 Sep; 18(1):107. PubMed ID: 36050789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants.
    Rossi L; Fedenia LN; Sharifan H; Ma X; Lombardini L
    Plant Physiol Biochem; 2019 Feb; 135():160-166. PubMed ID: 30553137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization and functional analysis of the β-galactosidase gene during Coffea arabica (L.) fruit development.
    Figueiredo SA; Lashermes P; Aragão FJ
    J Exp Bot; 2011 May; 62(8):2691-703. PubMed ID: 21239378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rhizosphere Microbiomes of Five Species of Coffee Trees.
    de Sousa LP; Guerreiro-Filho O; Mondego JMC
    Microbiol Spectr; 2022 Apr; 10(2):e0044422. PubMed ID: 35289671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain.
    Simkin AJ; Qian T; Caillet V; Michoux F; Ben Amor M; Lin C; Tanksley S; McCarthy J
    J Plant Physiol; 2006 May; 163(7):691-708. PubMed ID: 16442665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of deficit irrigation on water-radiation use and yield of Coffea arabica under different shade cultivation modes in dry-hot region].
    Hao K; Liu XG; Han ZH; Yu N; Cheng JH; Liu C; Li YL; Yang QL
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3550-3558. PubMed ID: 30460801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.
    Charbonnier F; Roupsard O; le Maire G; Guillemot J; Casanoves F; Lacointe A; Vaast P; Allinne C; Audebert L; Cambou A; Clément-Vidal A; Defrenet E; Duursma RA; Jarri L; Jourdan C; Khac E; Leandro P; Medlyn BE; Saint-André L; Thaler P; Van Den Meersche K; Barquero Aguilar A; Lehner P; Dreyer E
    Plant Cell Environ; 2017 Aug; 40(8):1592-1608. PubMed ID: 28382683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The concentration of polyphenolic compounds and trace elements in the Coffea arabica leaves: Potential chemometric pattern recognition of coffee leaf rust resistance.
    Silva FLF; Nascimento GO; Lopes GS; Matos WO; Cunha RL; Malta MR; Liska GR; Owen RW; Trevisan MTS
    Food Res Int; 2020 Aug; 134():109221. PubMed ID: 32517933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.