These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34046745)

  • 1. Fine-tuning of a generative neural network for designing multi-target compounds.
    Blaschke T; Bajorath J
    J Comput Aided Mol Des; 2022 May; 36(5):363-371. PubMed ID: 34046745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Zhang J; Chen H
    J Chem Inf Model; 2022 Jul; 62(14):3291-3306. PubMed ID: 35793555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Applied to Ligand-Based De Novo Drug Design.
    Palazzesi F; Pozzan A
    Methods Mol Biol; 2022; 2390():273-299. PubMed ID: 34731474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo molecular design with deep molecular generative models for PPI inhibitors.
    Wang J; Chu Y; Mao J; Jeon HN; Jin H; Zeb A; Jang Y; Cho KH; Song T; No KT
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35830870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compound dataset and custom code for deep generative multi-target compound design.
    Blaschke T; Bajorath J
    Future Sci OA; 2021 Apr; 7(6):FSO715. PubMed ID: 34046209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative Models for De Novo Drug Design.
    Tong X; Liu X; Tan X; Li X; Jiang J; Xiong Z; Xu T; Jiang H; Qiao N; Zheng M
    J Med Chem; 2021 Oct; 64(19):14011-14027. PubMed ID: 34533311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor.
    Li Y; Zhang L; Wang Y; Zou J; Yang R; Luo X; Wu C; Yang W; Tian C; Xu H; Wang F; Yang X; Li L; Yang S
    Nat Commun; 2022 Nov; 13(1):6891. PubMed ID: 36371441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-based generative models for de Novo drug design.
    Xia X; Hu J; Wang Y; Zhang L; Liu Z
    Drug Discov Today Technol; 2019 Dec; 32-33():45-53. PubMed ID: 33386094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods.
    Mouchlis VD; Afantitis A; Serra A; Fratello M; Papadiamantis AG; Aidinis V; Lynch I; Greco D; Melagraki G
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for molecular generation.
    Xu Y; Lin K; Wang S; Wang L; Cai C; Song C; Lai L; Pei J
    Future Med Chem; 2019 Mar; 11(6):567-597. PubMed ID: 30698019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning.
    Feldmann C; Yonchev D; Bajorath J
    Biomolecules; 2020 Nov; 10(12):. PubMed ID: 33260876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.