BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34046777)

  • 1. Local hemodynamic analysis after coronary stent implantation based on Euler-Lagrange method.
    Wang Y; Zhan J; Bian W; Tang X; Zeng M
    J Biol Phys; 2021 Jun; 47(2):143-170. PubMed ID: 34046777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions.
    He Y; Duraiswamy N; Frank AO; Moore JE
    J Biomech Eng; 2005 Aug; 127(4):637-47. PubMed ID: 16121534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments.
    Mejia J; Ruzzeh B; Mongrain R; Leask R; Bertrand OF
    Biomed Eng Online; 2009 Apr; 8():8. PubMed ID: 19405976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening.
    LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary Artery Stenting Affects Wall Shear Stress Topological Skeleton.
    Chiastra C; Mazzi V; Lodi Rizzini M; Calò K; Corti A; Acquasanta A; De Nisco G; Belliggiano D; Cerrato E; Gallo D; Morbiducci U
    J Biomech Eng; 2022 Jun; 144(6):. PubMed ID: 35015058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Cowan B
    Ann Biomed Eng; 2016 Feb; 44(2):315-29. PubMed ID: 26178872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation.
    LaDisa JF; Guler I; Olson LE; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    Ann Biomed Eng; 2003 Sep; 31(8):972-80. PubMed ID: 12918912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J; Mongrain R; Bertrand OF
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamically driven stent strut design.
    Jiménez JM; Davies PF
    Ann Biomed Eng; 2009 Aug; 37(8):1483-94. PubMed ID: 19472055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics study of common stent models inside idealised curved coronary arteries.
    Chen WX; Poon EK; Hutchins N; Thondapu V; Barlis P; Ooi A
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):671-681. PubMed ID: 28349764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conical stent in coronary artery improves hemodynamics compared with the traditional cylindrical stent.
    Yu Y; Zhou Y; Ma Q; Jia S; Wu S; Sun Y; Liu X; Zhao Y; Liu Y; Shi D
    Int J Cardiol; 2017 Jan; 227():166-171. PubMed ID: 27863293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of near-wall hemodynamic parameters in stented artery models.
    Duraiswamy N; Schoephoerster RT; Moore JE
    J Biomech Eng; 2009 Jun; 131(6):061006. PubMed ID: 19449960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamics in stented vertebral artery ostial stenosis based on computational fluid dynamics simulations.
    Qiao A; Dai X; Niu J; Jiao L
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1190-200. PubMed ID: 26691981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different stent designs on local hemodynamics in stented arteries.
    Balossino R; Gervaso F; Migliavacca F; Dubini G
    J Biomech; 2008; 41(5):1053-61. PubMed ID: 18215394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic effects of compliance mismatch in stented arteries.
    Selvarasu NK; Tafti DK; Vlachos PP
    J Biomech Eng; 2011 Feb; 133(2):021008. PubMed ID: 21280880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.