These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34047209)

  • 1. Bone Growth Capacity of Human Umbilical Cord Mesenchymal Stem Cells and BMP-2 Seeded Into Hydroxyapatite/Chitosan/Gelatin Scaffold in Alveolar Cleft Defects: An Experimental Study in Goat.
    Bangun K; Sukasah CL; Dilogo IH; Indrani DJ; Siregar NC; Pandelaki J; Iskandriati D; Kekalih A; Halim J
    Cleft Palate Craniofac J; 2021 Jun; 58(6):707-717. PubMed ID: 34047209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A
    J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F; Zhang YC; Zhou H; Guo YC; Su XX
    J Biomed Mater Res A; 2014 Mar; 102(3):760-8. PubMed ID: 23564567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of Rat Calvarial Bone Defect by Using Exosomes of Umbilical Cord-Derived Mesenchymal Stromal Cells Embedded in Chitosan/Hydroxyapatite Scaffolds.
    Bahar D; Gonen ZB; Gumusderelioglu M; Onger ME; Tokak EK; Ozturk-Kup F; Ozkan BB; Gokdemir NS; Cetin M
    Int J Oral Maxillofac Implants; 2022; 37(5):943-950. PubMed ID: 36170309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration.
    Li X; Zhang R; Tan X; Li B; Liu Y; Wang X
    Int J Med Sci; 2019; 16(7):1007-1017. PubMed ID: 31341414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [
    Chai L; Quan R; Hu J; Huang X; Lü J; Zhang C; Qiu R; Cai B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Feb; 33(2):252-258. PubMed ID: 30739425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration by nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds seeded with human umbilical cord mesenchymal stem cells in the calvarial defects of the nude mice.
    Wang F; Su XX; Guo YC; Li A; Zhang YC; Zhou H; Qiao H; Guan LM; Zou M; Si XQ
    Biomed Res Int; 2015; 2015():261938. PubMed ID: 26550565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration.
    Bakopoulou A; Georgopoulou Α; Grivas I; Bekiari C; Prymak O; Loza Κ; Epple M; Papadopoulos GC; Koidis P; Chatzinikolaidou Μ
    Dent Mater; 2019 Feb; 35(2):310-327. PubMed ID: 30527589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion: early result in a sheep model.
    Tan KK; Tan GH; Shamsul BS; Chua KH; Ng MH; Ruszymah BH; Aminuddin BS; Loqman MY
    Med J Malaysia; 2005 Jul; 60 Suppl C():53-8. PubMed ID: 16381285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration.
    Wang Q; Tang Y; Ke Q; Yin W; Zhang C; Guo Y; Guan J
    J Mater Chem B; 2020 Jun; 8(24):5280-5292. PubMed ID: 32441294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a bone graft substitute consisting of porous gradient HA/ZrO
    Shao RX; Quan RF; Wang T; Du WB; Jia GY; Wang D; Lv LB; Xu CY; Wei XC; Wang JF; Yang DS
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1813-e1825. PubMed ID: 29055138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis
    Chen Y; Liu X; Liu R; Gong Y; Wang M; Huang Q; Feng Q; Yu B
    Theranostics; 2017; 7(5):1072-1087. PubMed ID: 28435449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nacre-mimetic hydroxyapatite/chitosan/gelatin layered scaffolds modifying substance P for subchondral bone regeneration.
    Chen D; Liu P; Li M; Zhang C; Gao Y; Guo Y
    Carbohydr Polym; 2022 Sep; 291():119575. PubMed ID: 35698339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model.
    Yea JH; Bae TS; Kim BJ; Cho YW; Jo CH
    Acta Biomater; 2020 Sep; 114():104-116. PubMed ID: 32682057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study.
    Fayyazbakhsh F; Solati-Hashjin M; Keshtkar A; Shokrgozar MA; Dehghan MM; Larijani B
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():701-714. PubMed ID: 28482581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs.
    Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW
    Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.