These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 34047710)

  • 1. Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study.
    Kasaeyan Naeini E; Subramanian A; Calderon MD; Zheng K; Dutt N; Liljeberg P; Salantera S; Nelson AM; Rahmani AM
    J Med Internet Res; 2021 May; 23(5):e25079. PubMed ID: 34047710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study.
    Aqajari SAH; Cao R; Kasaeyan Naeini E; Calderon MD; Zheng K; Dutt N; Liljeberg P; Salanterä S; Nelson AM; Rahmani AM
    JMIR Mhealth Uhealth; 2021 May; 9(5):e25258. PubMed ID: 33949957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Mobile Health Apps and Wearable Technology to Assess Changes and Predict Pain During Treatment of Acute Pain in Sickle Cell Disease: Feasibility Study.
    Johnson A; Yang F; Gollarahalli S; Banerjee T; Abrams D; Jonassaint J; Jonassaint C; Shah N
    JMIR Mhealth Uhealth; 2019 Dec; 7(12):e13671. PubMed ID: 31789599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Electrocardiogram and Respiratory Signal Quality of a Wearable Device (SensEcho): Semisupervised Machine Learning-Based Validation Study.
    Xu H; Yan W; Lan K; Ma C; Wu D; Wu A; Yang Z; Wang J; Zang Y; Yan M; Zhang Z
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e25415. PubMed ID: 34387554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Comput Biol Med; 2019 Sep; 112():103381. PubMed ID: 31404718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices.
    Dalmeida KM; Masala GL
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep cross-modal feature learning applied to predict acutely decompensated heart failure using in-home collected electrocardiography and transthoracic bioimpedance.
    Pan X; Wang C; Yu Y; Reljin N; McManus DD; Darling CE; Chon KH; Mendelson Y; Lee K
    Artif Intell Med; 2023 Jun; 140():102548. PubMed ID: 37210152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device.
    Smisek R; Hejc J; Ronzhina M; Nemcova A; Marsanova L; Kolarova J; Smital L; Vitek M
    Physiol Meas; 2018 Sep; 39(9):094003. PubMed ID: 30102239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective Study Evaluating a Pain Assessment Tool in a Postoperative Environment: Protocol for Algorithm Testing and Enhancement.
    Kasaeyan Naeini E; Jiang M; Syrjälä E; Calderon MD; Mieronkoski R; Zheng K; Dutt N; Liljeberg P; Salanterä S; Nelson AM; Rahmani AM
    JMIR Res Protoc; 2020 Jul; 9(7):e17783. PubMed ID: 32609091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prenatal Cortisol Levels Estimation Using Heart Rate and Heart Rate Variability: A Weak Supervised Learning Based Approach.
    Cao R; Huang Y; Rahmani AM; Lindsay K
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4430-4433. PubMed ID: 36086524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning approach for semi-automatic assessment of IADL dependence in older adults with wearable sensors.
    Garcia-Moreno FM; Bermudez-Edo M; Rodríguez-García E; Pérez-Mármol JM; Garrido JL; Rodríguez-Fórtiz MJ
    Int J Med Inform; 2022 Jan; 157():104625. PubMed ID: 34763192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized seizure detection using logistic regression machine learning based on wearable ECG-monitoring device.
    Jeppesen J; Christensen J; Johansen P; Beniczky S
    Seizure; 2023 Apr; 107():155-161. PubMed ID: 37068328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Approaches for Exercise Exertion Level Classification Using Data from Wearable Physiologic Monitors.
    Smiley A; Tsai TY; Havrylchuk I; Gabriel A; Zakashansky E; Xhakli T; Lyu J; Cui W; Parvanova I; Finkelstein J
    Stud Health Technol Inform; 2024 Jan; 310():1428-1429. PubMed ID: 38269680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III.
    Boon KH; Khalil-Hani M; Malarvili MB
    Comput Methods Programs Biomed; 2018 Jan; 153():171-184. PubMed ID: 29157449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study.
    Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B
    J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone.
    Kim H; Lee S; Lee S; Hong S; Kang H; Kim N
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multichannel ECG recording from waist using textile sensors.
    Alizadeh Meghrazi M; Tian Y; Mahnam A; Bhattachan P; Eskandarian L; Taghizadeh Kakhki S; Popovic MR; Lankarany M
    Biomed Eng Online; 2020 Jun; 19(1):48. PubMed ID: 32546233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation.
    Pouromran F; Radhakrishnan S; Kamarthi S
    PLoS One; 2021; 16(7):e0254108. PubMed ID: 34242325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals.
    Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z
    Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning detection of Atrial Fibrillation using wearable technology.
    Lown M; Brown M; Brown C; Yue AM; Shah BN; Corbett SJ; Lewith G; Stuart B; Moore M; Little P
    PLoS One; 2020; 15(1):e0227401. PubMed ID: 31978173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.