These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34048090)

  • 1. A Roadmap to Cardiac Tissue-Engineered Construct Preservation: Insights from Cells, Tissues, and Organs.
    Sampaio-Pinto V; Janssen J; Chirico N; Serra M; Alves PM; Doevendans PA; Voets IK; Sluijter JPG; van Laake LW; van Mil A
    Adv Mater; 2021 Jul; 33(27):e2008517. PubMed ID: 34048090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs.
    Janssen J; Chirico N; Ainsworth MJ; Cedillo-Servin G; Viola M; Dokter I; Vermonden T; Doevendans PA; Serra M; Voets IK; Malda J; Castilho M; van Laake LW; Sluijter JPG; Sampaio-Pinto V; van Mil A
    Biomater Sci; 2024 Jul; 12(15):3866-3881. PubMed ID: 38910521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality.
    Arutyunyan I; Elchaninov A; Sukhikh G; Fatkhudinov T
    Stem Cell Rev Rep; 2022 Apr; 18(4):1234-1252. PubMed ID: 34761366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curcumin: footprints on cardiac tissue engineering.
    Kargozar S; Baino F; Hoseini SJ; Verdi J; Asadpour S; Mozafari M
    Expert Opin Biol Ther; 2019 Nov; 19(11):1199-1205. PubMed ID: 31364892
    [No Abstract]   [Full Text] [Related]  

  • 5. Nanotechnology-based Cryopreservation of Cell-Scaffold Constructs: A New Breakthrough to Clinical Application.
    Chen G; Lv Y
    Cryo Letters; 2016; 37(6):381-387. PubMed ID: 28072423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Application of Cryoprotectants.
    Rajan R; Matsumura K
    Adv Exp Med Biol; 2018; 1081():339-354. PubMed ID: 30288718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting in cardiac tissue engineering.
    Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y
    Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability.
    Zouhair S; Aguiari P; Iop L; Vásquez-Rivera A; Filippi A; Romanato F; Korossis S; Wolkers WF; Gerosa G
    Acta Biomater; 2019 Jan; 84():208-221. PubMed ID: 30342283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies in cardiac tissue engineering.
    Tee R; Lokmic Z; Morrison WA; Dilley RJ
    ANZ J Surg; 2010 Oct; 80(10):683-93. PubMed ID: 21040327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles.
    Taylor DA; Frazier OH; Elgalad A; Hochman-Mendez C; Sampaio LC
    Artif Organs; 2018 Oct; 42(10):970-982. PubMed ID: 30044011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitrification as a prospect for cryopreservation of tissue-engineered constructs.
    Kuleshova LL; Gouk SS; Hutmacher DW
    Biomaterials; 2007 Mar; 28(9):1585-96. PubMed ID: 17178158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Approaches to Cryopreservation of Cells, Tissues, and Organs.
    Taylor MJ; Weegman BP; Baicu SC; Giwa SE
    Transfus Med Hemother; 2019 Jun; 46(3):197-215. PubMed ID: 31244588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 4 Role of Antioxidants and Antifreeze Proteins in Cryopreservation/Vitrification.
    Kim SK; Youm HW; Lee JR; Suh CS
    Methods Mol Biol; 2017; 1568():45-63. PubMed ID: 28421488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystallization properties of antifreeze GelMA hydrogel and its application in cryopreservation of tissue-engineered skin constructs.
    Tan J; Li J; Zhou X
    J Biomed Mater Res B Appl Biomater; 2024 May; 112(5):e35408. PubMed ID: 38676958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs.
    Bissoyi A; Pramanik K; Panda NN; Sarangi SK
    Cryobiology; 2014 Jun; 68(3):332-42. PubMed ID: 24759299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a vitrification method for preserving human myoblast cell sheets for myocardial regeneration therapy.
    Ohkawara H; Miyagawa S; Fukushima S; Yajima S; Saito A; Nagashima H; Sawa Y
    BMC Biotechnol; 2018 Sep; 18(1):56. PubMed ID: 30200961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in cryopreservation of organs.
    Liu D; Pan F
    J Huazhong Univ Sci Technolog Med Sci; 2016 Apr; 36(2):153-161. PubMed ID: 27072955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of cryopreservation of engineered tissues with one-dimensional geometry.
    Cui ZF; Dykhuizen RC; Nerem RM; Sembanis A
    Biotechnol Prog; 2002; 18(2):354-61. PubMed ID: 11934307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues: sucrose versus trehalose as the non-permeable protective agent.
    Tian T; Zhao G; Han D; Zhu K; Chen D; Zhang Z; Wei Z; Cao Y; Zhou P
    Hum Reprod; 2015 Apr; 30(4):877-83. PubMed ID: 25662812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review.
    Vogel AD; Suk R; Haran C; Dickinson PG; Helke KL; Hassid M; Fitzgerald DC; Turek JW; Brockbank KGM; Rajab TK
    Cryobiology; 2024 Jun; 115():104880. PubMed ID: 38437898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.