These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34048603)

  • 1. Predicting thermal pleasure experienced in dynamic environments from simulated cutaneous thermoreceptor activity.
    Parkinson T; Zhang H; Arens E; He Y; de Dear R; Elson J; Parkinson A; Maranville C; Wang A
    Indoor Air; 2021 Nov; 31(6):2266-2280. PubMed ID: 34048603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic thermal pleasure in outdoor environments - temporal alliesthesia.
    Liu S; Nazarian N; Hart MA; Niu J; Xie Y; de Dear R
    Sci Total Environ; 2021 Jun; 771():144910. PubMed ID: 33736141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of overall body thermal sensation based on the thermal response of local cutaneous thermoreceptors.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2019 Jul; 83():187-194. PubMed ID: 31331518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New neurophysiological human thermal model based on thermoreceptor responses.
    El Kadri M; De Oliveira F; Inard C; Demouge F
    Int J Biometeorol; 2020 Dec; 64(12):2007-2017. PubMed ID: 32820392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2018 May; 74():290-302. PubMed ID: 29801641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on electroencephalogram to measure thermal pleasure in thermal alliesthesia in temperature step-change environment.
    Son YJ; Chun C
    Indoor Air; 2018 Nov; 28(6):916-923. PubMed ID: 29989216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new local index for predicting local thermal response of individual body segments.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2018 Dec; 78():161-173. PubMed ID: 30509632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal sensation: a mathematical model based on neurophysiology.
    Kingma BR; Schellen L; Frijns AJ; van Marken Lichtenbelt WD
    Indoor Air; 2012 Jun; 22(3):253-62. PubMed ID: 22106946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the local cutaneous sensory thermoneutral zone.
    Filingeri D; Zhang H; Arens EA
    J Neurophysiol; 2017 Apr; 117(4):1797-1806. PubMed ID: 28148644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures.
    Filingeri D; Fournet D; Hodder S; Havenith G
    J Appl Physiol (1985); 2014 Oct; 117(8):887-97. PubMed ID: 25103965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The frequency and sequence of the biopotentials of the cold thermoreceptors at different skin temperatures].
    Danilova NK; Ivanov KP; Konstantinov VA; Morozov GB
    Fiziol Zh SSSR Im I M Sechenova; 1990 Jul; 76(7):924-31. PubMed ID: 2174388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermosensory processing in the Drosophila brain.
    Liu WW; Mazor O; Wilson RI
    Nature; 2015 Mar; 519(7543):353-7. PubMed ID: 25739502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impulse coding in primate cutaneous thermoreceptors in dynamic thermal conditions.
    Iggo A; Iggo BJ
    J Physiol (Paris); 1971 May; 63(3):287-90. PubMed ID: 5001110
    [No Abstract]   [Full Text] [Related]  

  • 14. Sensory pleasure.
    Cabanac M
    Q Rev Biol; 1979 Mar; 54(1):1-29. PubMed ID: 379894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple apparatus to assess cutaneous thermal sensitivity.
    Bruce MF
    J Neurol Neurosurg Psychiatry; 1982 Jun; 45(6):557-9. PubMed ID: 7119821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating neurophysiological concepts in mathematical thermoregulation models.
    Kingma BR; Vosselman MJ; Frijns AJ; van Steenhoven AA; van Marken Lichtenbelt WD
    Int J Biometeorol; 2014 Jan; 58(1):87-99. PubMed ID: 23354424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central and peripheral thermoreceptors. Comparative analysis of the effects of prolonged adaptation to cold and noradrenaline.
    Kozyreva TV
    Neurosci Behav Physiol; 2007 Feb; 37(2):191-8. PubMed ID: 17187211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoreceptors and thermosensitive afferents.
    Schepers RJ; Ringkamp M
    Neurosci Biobehav Rev; 2009 Mar; 33(3):205-12. PubMed ID: 18761036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea.
    Parra A; Gonzalez-Gonzalez O; Gallar J; Belmonte C
    Pain; 2014 Aug; 155(8):1481-1491. PubMed ID: 24785271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiology of Skin Thermal Sensations.
    Filingeri D
    Compr Physiol; 2016 Jun; 6(3):1429. PubMed ID: 27347898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.