BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34048706)

  • 1. Differential encoding of place value between the dorsal and intermediate hippocampus.
    Jin SW; Lee I
    Curr Biol; 2021 Jul; 31(14):3053-3072.e5. PubMed ID: 34048706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different encoding of reward location in dorsal and intermediate hippocampus.
    Jarzebowski P; Hay YA; Grewe BF; Paulsen O
    Curr Biol; 2022 Feb; 32(4):834-841.e5. PubMed ID: 35016008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insensitivity of Place Cells to the Value of Spatial Goals in a Two-Choice Flexible Navigation Task.
    Duvelle É; Grieves RM; Hok V; Poucet B; Arleo A; Jeffery KJ; Save E
    J Neurosci; 2019 Mar; 39(13):2522-2541. PubMed ID: 30696727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model for spatial cognition combining dorsal and ventral hippocampal place field maps: multiscale navigation.
    Scleidorovich P; Llofriu M; Fellous JM; Weitzenfeld A
    Biol Cybern; 2020 Apr; 114(2):187-207. PubMed ID: 31915905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for the lateral dorsal tegmentum in memory and decision neural circuitry.
    Redila V; Kinzel C; Jo YS; Puryear CB; Mizumori SJ
    Neurobiol Learn Mem; 2015 Jan; 117():93-108. PubMed ID: 24910282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple coordinated cellular dynamics mediate CA1 map plasticity.
    Mizuta K; Nakai J; Hayashi Y; Sato M
    Hippocampus; 2021 Mar; 31(3):235-243. PubMed ID: 33452849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release.
    Retailleau A; Morris G
    Curr Biol; 2018 Mar; 28(6):836-846.e4. PubMed ID: 29502949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic coding of dorsal hippocampal neurons between tasks that differ in structure and memory demand.
    Hallock HL; Griffin AL
    Hippocampus; 2013 Feb; 23(2):169-86. PubMed ID: 23034771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abstract Representation of Prospective Reward in the Hippocampus.
    Zeithamova D; Gelman BD; Frank L; Preston AR
    J Neurosci; 2018 Nov; 38(47):10093-10101. PubMed ID: 30282732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal place cell activity during chasing of a moving object associated with reward in rats.
    Ho SA; Hori E; Kobayashi T; Umeno K; Tran AH; Ono T; Nishijo H
    Neuroscience; 2008 Nov; 157(1):254-70. PubMed ID: 18824217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.
    Schmidt B; Hinman JR; Jacobson TK; Szkudlarek E; Argraves M; Escabí MA; Markus EJ
    J Neurosci; 2013 Apr; 33(14):6212-24. PubMed ID: 23554502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Precision of Place Fields Governs Their Fate across Epochs of Experience.
    Chiu Y; Dong C; Krishnan S; Sheffield MEJ
    eNeuro; 2023 Dec; 10(12):. PubMed ID: 37973379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Integration of Goal-Directed Signals onto Spatial Maps of Hippocampal Place Cells.
    Aoki Y; Igata H; Ikegaya Y; Sasaki T
    Cell Rep; 2019 Apr; 27(5):1516-1527.e5. PubMed ID: 31042477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward cues in space: commonalities and differences in neural coding by hippocampal and ventral striatal ensembles.
    Lansink CS; Jackson JC; Lankelma JV; Ito R; Robbins TW; Everitt BJ; Pennartz CM
    J Neurosci; 2012 Sep; 32(36):12444-59. PubMed ID: 22956836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Representation of Hippocampal Place Cells in a T-Maze with an Aversive Stimulation.
    Okada S; Igata H; Sasaki T; Ikegaya Y
    Front Neural Circuits; 2017; 11():101. PubMed ID: 29321727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Variability and Asymmetric Expansion of the Hippocampal Spatial Representation in a Distal Cue-Dependent Memory Task.
    Park SB; Lee I
    Hippocampus; 2016 Aug; 26(8):1033-50. PubMed ID: 26972836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward-spatial view representations and learning in the primate hippocampus.
    Rolls ET; Xiang JZ
    J Neurosci; 2005 Jun; 25(26):6167-74. PubMed ID: 15987946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Place cells on a maze encode routes rather than destinations.
    Grieves RM; Wood ER; Dudchenko PA
    Elife; 2016 Jun; 5():. PubMed ID: 27282386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.