These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34048901)

  • 21. Improving motivation through real-time fMRI-based self-regulation of the nucleus accumbens.
    Li Z; Zhang CY; Huang J; Wang Y; Yan C; Li K; Zeng YW; Jin Z; Cheung EFC; Su L; Chan RCK
    Neuropsychology; 2018 Sep; 32(6):764-776. PubMed ID: 30047755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation.
    Hellrung L; Dietrich A; Hollmann M; Pleger B; Kalberlah C; Roggenhofer E; Villringer A; Horstmann A
    Neuroimage; 2018 Feb; 166():198-208. PubMed ID: 29100939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary findings on long-term effects of fMRI neurofeedback training on functional networks involved in sustained attention.
    Pamplona GSP; Heldner J; Langner R; Koush Y; Michels L; Ionta S; Salmon CEG; Scharnowski F
    Brain Behav; 2023 Oct; 13(10):e3217. PubMed ID: 37594145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution.
    Lee D; Jang C; Park HJ
    Neuroimage; 2019 Mar; 188():680-693. PubMed ID: 30599191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in brain activation related to visuo-spatial memory after real-time fMRI neurofeedback training in healthy elderly and Alzheimer's disease.
    Hohenfeld C; Kuhn H; Müller C; Nellessen N; Ketteler S; Heinecke A; Goebel R; Shah NJ; Schulz JB; Reske M; Reetz K
    Behav Brain Res; 2020 Mar; 381():112435. PubMed ID: 31863845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Training emotion regulation through real-time fMRI neurofeedback of amygdala activity.
    Herwig U; Lutz J; Scherpiet S; Scheerer H; Kohlberg J; Opialla S; Preuss A; Steiger VR; Sulzer J; Weidt S; Stämpfli P; Rufer M; Seifritz E; Jäncke L; Brühl AB
    Neuroimage; 2019 Jan; 184():687-696. PubMed ID: 30287300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semantic fMRI neurofeedback: a multi-subject study at 3 tesla.
    Ciarlo A; Russo AG; Ponticorvo S; di Salle F; Lührs M; Goebel R; Esposito F
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35561669
    [No Abstract]   [Full Text] [Related]  

  • 28. Neural Correlates of Success and Failure Signals During Neurofeedback Learning.
    Radua J; Stoica T; Scheinost D; Pittenger C; Hampson M
    Neuroscience; 2018 May; 378():11-21. PubMed ID: 27063101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder.
    Young KD; Siegle GJ; Misaki M; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage Clin; 2018; 17():691-703. PubMed ID: 29270356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.
    Koush Y; Meskaldji DE; Pichon S; Rey G; Rieger SW; Linden DE; Van De Ville D; Vuilleumier P; Scharnowski F
    Cereb Cortex; 2017 Feb; 27(2):1193-1202. PubMed ID: 26679192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment.
    Oblak EF; Lewis-Peacock JA; Sulzer JS
    PLoS Comput Biol; 2017 Jul; 13(7):e1005681. PubMed ID: 28753639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.
    Sorger B; Kamp T; Weiskopf N; Peters JC; Goebel R
    Neuroscience; 2018 May; 378():71-88. PubMed ID: 27659118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directly Exploring the Neural Correlates of Feedback-Related Reward Saliency and Valence During Real-Time fMRI-Based Neurofeedback.
    Direito B; Ramos M; Pereira J; Sayal A; Sousa T; Castelo-Branco M
    Front Hum Neurosci; 2020; 14():578119. PubMed ID: 33613202
    [No Abstract]   [Full Text] [Related]  

  • 34. How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI.
    Sepulveda P; Sitaram R; Rana M; Montalba C; Tejos C; Ruiz S
    Hum Brain Mapp; 2016 Sep; 37(9):3153-71. PubMed ID: 27272616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic reconfiguration of human brain functional networks through neurofeedback.
    Haller S; Kopel R; Jhooti P; Haas T; Scharnowski F; Lovblad KO; Scheffler K; Van De Ville D
    Neuroimage; 2013 Nov; 81():243-252. PubMed ID: 23684872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback.
    Berman BD; Horovitz SG; Hallett M
    Front Hum Neurosci; 2013; 7():638. PubMed ID: 24133436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice.
    Kohl SH; Mehler DMA; Lührs M; Thibault RT; Konrad K; Sorger B
    Front Neurosci; 2020; 14():594. PubMed ID: 32848528
    [No Abstract]   [Full Text] [Related]  

  • 38. Self-Modulation of Premotor Cortex Interhemispheric Connectivity in a Real-Time Functional Magnetic Resonance Imaging Neurofeedback Study Using an Adaptive Approach.
    Pereira J; Direito B; Sayal A; Ferreira C; Castelo-Branco M
    Brain Connect; 2019 Nov; 9(9):662-672. PubMed ID: 31547673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity.
    Hui M; Zhang H; Ge R; Yao L; Long Z
    Neuropsychologia; 2014 Sep; 62():111-23. PubMed ID: 25058055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of anterior cingulate vs. insular cortex as targets for real-time fMRI regulation during pain stimulation.
    Emmert K; Breimhorst M; Bauermann T; Birklein F; Van De Ville D; Haller S
    Front Behav Neurosci; 2014; 8():350. PubMed ID: 25346666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.