BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34049167)

  • 1. Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell.
    Gebreslassie TR; Nguyen PKT; Yoon HH; Kim J
    Bioresour Technol; 2021 Sep; 336():125269. PubMed ID: 34049167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production from macroalgae by simultaneous dark fermentation and microbial electrolysis cell.
    Nguyen PKT; Das G; Kim J; Yoon HH
    Bioresour Technol; 2020 Nov; 315():123795. PubMed ID: 32659424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen and electrical energy co-generation by a cooperative fermentation system comprising Clostridium and microbial fuel cell inoculated with port drainage sediment.
    Dos Passos VF; Marcilio R; Aquino-Neto S; Santana FB; Dias ACF; Andreote FD; de Andrade AR; Reginatto V
    Bioresour Technol; 2019 Apr; 277():94-103. PubMed ID: 30660066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage pretreatment of excess sludge for electricity generation in microbial fuel cell.
    Zhang Y; Zhao YG; Guo L; Gao M
    Environ Technol; 2019 Apr; 40(11):1349-1358. PubMed ID: 29281942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor.
    Eom H; Chung K; Kim I; Han JI
    Chemosphere; 2011 Oct; 85(4):672-6. PubMed ID: 21752422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidogenic fermentation of municipal solid waste and its application to bio-electricity production via microbial fuel cells (MfCs).
    Cavdar P; Yilmaz E; Tugtas AE; Calli B
    Water Sci Technol; 2011; 64(4):789-95. PubMed ID: 22097062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butyrate production and purification by combining dry fermentation of food waste with a microbial fuel cell.
    Hussain A; Lee J; Xiong Z; Wang Y; Lee HS
    J Environ Manage; 2021 Dec; 300():113827. PubMed ID: 34649320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.
    Choi J; Ahn Y
    Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].
    Cai XB; Yang Y; Sun YP; Zhang L; Xiao Y; Zhao H
    Huan Jing Ke Xue; 2010 Oct; 31(10):2512-7. PubMed ID: 21229770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing microbial fuel cell performance through microbial immobilization.
    Mersinkova Y; Yemendzhiev H
    Z Naturforsch C J Biosci; 2024 May; 79(5-6):149-153. PubMed ID: 38869146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of dark fermentation of macroalgae for hydrogen and volatile fatty acids production.
    Kim B; Jeong J; Kim J; Hee Yoon H; Khanh Thinh Nguyen P; Kim J
    Bioresour Technol; 2022 Jun; 354():127193. PubMed ID: 35452825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.
    Abourached C; Lesnik KL; Liu H
    Bioresour Technol; 2014 Aug; 166():229-34. PubMed ID: 24912141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell.
    Liu S; Liu X; Wang Y; Zhang P
    Bioresour Technol; 2016 Dec; 222():226-231. PubMed ID: 27718405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vertically configured photocatalytic-microbial fuel cell for electricity generation and gaseous toluene degradation.
    Dai Y; Guo Y; Wang J; Li Y; Zhang L; Liu X
    Chemosphere; 2021 Dec; 285():131530. PubMed ID: 34273692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell.
    Thu Ha Tran T; Khanh Thinh Nguyen P
    Bioresour Technol; 2022 Aug; 357():127340. PubMed ID: 35598775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.
    Tanino T; Nara Y; Tsujiguchi T; Ohshima T
    J Biosci Bioeng; 2013 Aug; 116(2):219-23. PubMed ID: 23518569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.