BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34049266)

  • 1. Quantifying global warming potential of alternative biorefinery systems for producing fuels from Chinese food waste.
    Guo H; Zhao Y; Damgaard A; Wang Q; Wang H; Christensen TH; Lu W
    Waste Manag; 2021 Jul; 130():38-47. PubMed ID: 34049266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.
    Chowdhury R; Viamajala S; Gerlach R
    Bioresour Technol; 2012 Mar; 108():102-11. PubMed ID: 22264431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global warming potential of typical rural domestic waste treatment modes in China: a case study in Ankang.
    Guo H; Nie X; Shu T; Li X; Bai B
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47149-47161. PubMed ID: 33890212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers.
    Iordan C; Lausselet C; Cherubini F
    J Environ Manage; 2016 Dec; 184(Pt 3):517-527. PubMed ID: 27789091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the economic and environmental sustainability of household food waste management in the UK: Current situation and future scenarios.
    Slorach PC; Jeswani HK; Cuéllar-Franca R; Azapagic A
    Sci Total Environ; 2020 Mar; 710():135580. PubMed ID: 31785911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil.
    Lombardi L; Mendecka B; Carnevale E
    J Environ Manage; 2018 Jun; 216():235-245. PubMed ID: 28521956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels.
    Natividad Pérez-Camacho M; Curry R; Cromie T
    Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach.
    Khan MMH; Havukainen J; Horttanainen M
    Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment and society willingness to pay indexes of food waste-to-energy strategies.
    Huang Y; Zhao C; Gao B; Ma S; Zhong Q; Wang L; Cui S
    J Environ Manage; 2022 Mar; 305():114364. PubMed ID: 34959060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogas production by means of an anaerobic-digestion plant in France: LCA of greenhouse-gas emissions and other environmental indicators.
    Lamnatou C; Nicolaï R; Chemisana D; Cristofari C; Cancellieri D
    Sci Total Environ; 2019 Jun; 670():1226-1239. PubMed ID: 31018437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food waste minimization from a life-cycle perspective.
    Bernstad Saraiva Schott A; Andersson T
    J Environ Manage; 2015 Jan; 147():219-26. PubMed ID: 25264296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution.
    Eisted R; Larsen AW; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):738-45. PubMed ID: 19808734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material flow and sustainability analyses of biorefining of municipal solid waste.
    Sadhukhan J; Martinez-Hernandez E
    Bioresour Technol; 2017 Nov; 243():135-146. PubMed ID: 28651133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of biorefineries based on experimental data: production of bioethanol, biogas, syngas, and electricity using coffee-cut stems as raw material.
    Aristizábal-Marulanda V; Solarte-Toro JC; Cardona Alzate CA
    Environ Sci Pollut Res Int; 2021 May; 28(19):24590-24604. PubMed ID: 32594433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel material-oriented valorization of biogas can achieve more carbon reduction than traditional utilization by bioelectricity or biomethane.
    Guo J; He P; Wu H; Xi Y; Li C; Zhang H; Zhou J; Liao J; Lü F
    Bioresour Technol; 2024 Mar; 395():130333. PubMed ID: 38244938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon.
    Achten WM; Vandenbempt P; Almeida J; Mathijs E; Muys B
    Environ Sci Technol; 2010 Jun; 44(12):4809-15. PubMed ID: 20496929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenhouse gas performance of biochemical biodiesel production from straw: soil organic carbon changes and time-dependent climate impact.
    Karlsson H; Ahlgren S; Sandgren M; Passoth V; Wallberg O; Hansson PA
    Biotechnol Biofuels; 2017; 10():217. PubMed ID: 28924452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative life cycle assessment of autotrophic cultivation of Scenedesmus dimorphus in raceway pond coupled to biodiesel and biogas production.
    Mediboyina MK; Banuvalli BK; Chauhan VS; Mudliar SN
    Bioprocess Biosyst Eng; 2020 Feb; 43(2):233-247. PubMed ID: 31559508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-Processing Agricultural Residues and Wet Organic Waste Can Produce Lower-Cost Carbon-Negative Fuels and Bioplastics.
    Wang Y; Baral NR; Yang M; Scown CD
    Environ Sci Technol; 2023 Feb; 57(7):2958-2969. PubMed ID: 36747467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Areas on which to focus when seeking to reduce the greenhouse gas emissions of commercial waste management. A case study of a hypermarket, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2018 Jun; 76():1-18. PubMed ID: 29576513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.