BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34049298)

  • 1. SERS substrate with wettability difference for molecular self-concentrating detection.
    Liu C; Li J; Lei F; Wei Y; Li Z; Zhang C; Peng Q; Yu J; Man B
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34049298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag Nanoparticles Decorated CuO@RF Core-Shell Nanowires for High-Performance Surface-Enhanced Raman Spectroscopy Application.
    Chang TH; Di HW; Chang YC; Chou CM
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection.
    Chen S; Li Q; Tian D; Ke P; Yang X; Wu Q; Chen J; Hu C; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121030. PubMed ID: 35189488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and highly efficient route to the synthesis of NaLnF4-Ag hybrid nanorice with excellent SERS performances.
    Zhang M; Zhao A; Li D; Sun H; Wang D; Guo H; Gao Q; Gan Z; Tao W
    Analyst; 2012 Oct; 137(19):4584-92. PubMed ID: 22898563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace Cd
    Cheng M; Li C; Li W; Liu Y
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32854399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Doehlert Matrix for an Optimized Preparation of a Surface-Enhanced Raman Spectroscopy (SERS) Substrate Based on Silicon Nanowires for Ultrasensitive Detection of Rhodamine 6G.
    Ouhibi A; Saadaoui M; Lorrain N; Guendouz M; Raouafi N; Moadhen A
    Appl Spectrosc; 2020 Feb; 74(2):168-177. PubMed ID: 31617371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots.
    Dzhagan V; Mazur N; Kapush O; Skoryk M; Pirko Y; Yemets A; Dzhahan V; Shepeliavyi P; Valakh M; Yukhymchuk V
    ACS Omega; 2024 Jan; 9(4):4819-4830. PubMed ID: 38313516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Amorphous Titanium Dioxide/Silver (TiO
    Zhang L; Wu S; Zhang T; Li A; Wang G; Wang L; Liu C; Li W; Li J; Lu R
    Appl Spectrosc; 2024 Mar; 78(3):257-267. PubMed ID: 37941328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection.
    Geng ZQ; Zheng JJ; Li YP; Chen Y; Wang P; Han CQ; Yang GH; Qu LL
    Talanta; 2020 Dec; 220():121340. PubMed ID: 32928387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excellent surface-enhanced Raman scattering (SERS) based on AgFeO2 semiconductor nanoparticles.
    Shi Z; Wang T; Lin H; Wang X; Ding J; Shao M
    Nanoscale; 2013 Oct; 5(20):10029-33. PubMed ID: 24056983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic Ag-Cu Alloy Microflowers as SERS Substrates with Single-Molecule Detection Limit.
    Kaja S; Nag A
    Langmuir; 2021 Nov; 37(44):13027-13037. PubMed ID: 34699226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.
    Li L; Chin WS
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37538-37548. PubMed ID: 32701289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates.
    Yang KH; Liu YC; Yu CC
    Langmuir; 2010 Jul; 26(13):11512-7. PubMed ID: 20524629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature sensor based on surface-enhanced Raman spectroscopy.
    Yang KH; Mai FD; Yu CC; Liu YC
    Analyst; 2014 Oct; 139(20):5164-9. PubMed ID: 25112170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Ultrasensitive Polymers-Plasmonic Hybrid Flexible Platform for In-Situ Detection.
    Wu M; Zhang C; Ji Y; Tian Y; Wei H; Li C; Li Z; Zhu T; Sun Q; Man B; Liu M
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32050477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable SERS Detection by Hybrid Cu
    Sheng S; Ren Y; Yang S; Wang Q; Sheng P; Zhang X; Liu Y
    ACS Omega; 2020 Jul; 5(28):17703-17714. PubMed ID: 32715257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
    Zhang W; Xue T; Zhang L; Lu F; Liu M; Meng C; Mao D; Mei T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.