These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34049497)

  • 1. Revisiting Theron's hypothesis on the origin of fairy circles after four decades: Euphorbias are not the cause.
    Getzin S; Nambwandja A; Holch S; Wiegand K
    BMC Ecol Evol; 2021 May; 21(1):102. PubMed ID: 34049497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The allelopathic, adhesive, hydrophobic and toxic latex of Euphorbia species is the cause of fairy circles investigated at several locations in Namibia.
    Meyer JJM; Schutte CE; Hurter JW; Galt NS; Degashu P; Breetzke G; Baranenko D; Meyer NL
    BMC Ecol; 2020 Aug; 20(1):45. PubMed ID: 32746816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fairy circles in Namibia are assembled from genetically distinct grasses.
    Kappel C; Illing N; Huu CN; Barger NN; Cramer MD; Lenhard M; Midgley JJ
    Commun Biol; 2020 Nov; 3(1):698. PubMed ID: 33219348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are Namibian "fairy circles" the consequence of self-organizing spatial vegetation patterning?
    Cramer MD; Barger NN
    PLoS One; 2013; 8(8):e70876. PubMed ID: 23976962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiments Testing the Causes of Namibian Fairy Circles.
    Tschinkel WR
    PLoS One; 2015; 10(10):e0140099. PubMed ID: 26510015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Microbial Phylotypes in Namib Desert Dune and Gravel Plain Fairy Circle Soils.
    van der Walt AJ; Johnson RM; Cowan DA; Seely M; Ramond JB
    Appl Environ Microbiol; 2016 Aug; 82(15):4592-4601. PubMed ID: 27208111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The life cycle and life span of Namibian fairy circles.
    Tschinkel WR
    PLoS One; 2012; 7(6):e38056. PubMed ID: 22761663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of fairy circles in Australia supports self-organization theory.
    Getzin S; Yizhaq H; Bell B; Erickson TE; Postle AC; Katra I; Tzuk O; Zelnik YR; Wiegand K; Wiegand T; Meron E
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3551-6. PubMed ID: 26976567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do high soil temperatures on Namibian fairy circle discs explain the absence of vegetation?
    Vlieghe K; Picker M
    PLoS One; 2019; 14(5):e0217153. PubMed ID: 31107927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.
    Fuentes-Ramirez A; Veldman JW; Holzapfel C; Moloney KA
    Ecol Appl; 2016 Oct; 26(7):2311-2322. PubMed ID: 27755715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of fire on the spatial distribution of Larrea tridentata in the Sonoran Desert, USA.
    Fuentes-Ramirez A; Mudrak EL; Caragea PC; Holzapfel C; Moloney KA
    Oecologia; 2015 Jun; 178(2):473-84. PubMed ID: 25561171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do species' strategies and type of stress predict net positive effects in an arid ecosystem?
    Graff P; Aguiar MR
    Ecology; 2017 Mar; 98(3):794-806. PubMed ID: 27987317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong interaction between plants induces circular barren patches: fairy circles.
    Fernandez-Oto C; Tlidi M; Escaff D; Clerc MG
    Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2027):. PubMed ID: 25246685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential stoichiometric responses of shrubs and grasses to increased precipitation in a degraded karst ecosystem in Southwestern China.
    Umair M; Sun N; Du H; Chen K; Tao H; Yuan J; Abbasi AM; Liu C
    Sci Total Environ; 2020 Jan; 700():134421. PubMed ID: 31693953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial patterns of soil moisture as affected by shrubs, in different climatic conditions.
    Pariente S
    Environ Monit Assess; 2002 Feb; 73(3):237-51. PubMed ID: 11878633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vegetation on bacterial communities, carbon and nitrogen in dryland soil surfaces: implications for shrub encroachment in the southwest Kalahari.
    Lan S; Thomas AD; Tooth S; Wu L; Elliott DR
    Sci Total Environ; 2021 Apr; 764():142847. PubMed ID: 33129532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-dependent relationships between the spatial distribution of a limiting resource and plant species diversity in an African grassland ecosystem.
    Anderson TM; McNaughton SJ; Ritchie ME
    Oecologia; 2004 Apr; 139(2):277-87. PubMed ID: 15007724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas.
    Patrick L; Cable J; Potts D; Ignace D; Barron-Gafford G; Griffith A; Alpert H; Van Gestel N; Robertson T; Huxman TE; Zak J; Loik ME; Tissue D
    Oecologia; 2007 Apr; 151(4):704-18. PubMed ID: 17180661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.
    Wang P; Li XY; Wang L; Wu X; Hu X; Fan Y; Tong Y
    New Phytol; 2018 Sep; 219(4):1325-1337. PubMed ID: 29862515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna.
    Le Roux X; Bariac T; Mariotti A
    Oecologia; 1995 Oct; 104(2):147-155. PubMed ID: 28307351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.