These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34049889)
1. Real-time imaging of Na Sun J; Sadd M; Edenborg P; Grönbeck H; Thiesen PH; Xia Z; Quintano V; Qiu R; Matic A; Palermo V Sci Adv; 2021 May; 7(22):. PubMed ID: 34049889 [TBL] [Abstract][Full Text] [Related]
2. Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes. Nijamudheen A; Sarbapalli D; Hui J; Rodríguez-López J; Mendoza-Cortes JL ACS Appl Mater Interfaces; 2020 Apr; 12(17):19393-19401. PubMed ID: 32109048 [TBL] [Abstract][Full Text] [Related]
3. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823 [TBL] [Abstract][Full Text] [Related]
4. Dual-Graphene Rechargeable Sodium Battery. Wang F; Liu Z; Zhang P; Li H; Sheng W; Zhang T; Jordan R; Wu Y; Zhuang X; Feng X Small; 2017 Dec; 13(47):. PubMed ID: 29076650 [TBL] [Abstract][Full Text] [Related]
5. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries. Smith K; Parrish R; Wei W; Liu Y; Li T; Hu YH; Xiong H ChemSusChem; 2016 Jun; 9(12):1397-402. PubMed ID: 27121419 [TBL] [Abstract][Full Text] [Related]
6. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications. Zhou W; Sit PH ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204 [TBL] [Abstract][Full Text] [Related]
7. Sodium into γ-Graphyne Multilayers: An Intercalation Compound for Anodes in Metal-Ion Batteries. Bartolomei M; Giorgi G ACS Mater Lett; 2024 Oct; 6(10):4682-4689. PubMed ID: 39391744 [TBL] [Abstract][Full Text] [Related]
8. Investigation of modified graphene for energy storage applications. Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171 [TBL] [Abstract][Full Text] [Related]
9. Solvated Ion Intercalation in Graphite: Sodium and Beyond. Park J; Xu ZL; Kang K Front Chem; 2020; 8():432. PubMed ID: 32509735 [TBL] [Abstract][Full Text] [Related]
10. Na-Ion Battery Anodes: Materials and Electrochemistry. Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764 [TBL] [Abstract][Full Text] [Related]
11. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Yoo E; Kim J; Hosono E; Zhou HS; Kudo T; Honma I Nano Lett; 2008 Aug; 8(8):2277-82. PubMed ID: 18651781 [TBL] [Abstract][Full Text] [Related]
12. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Lu K; Hu Z; Ma J; Ma H; Dai L; Zhang J Nat Commun; 2017 Sep; 8(1):527. PubMed ID: 28904375 [TBL] [Abstract][Full Text] [Related]
13. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
14. Intercalation chemistry of graphite: alkali metal ions and beyond. Li Y; Lu Y; Adelhelm P; Titirici MM; Hu YS Chem Soc Rev; 2019 Aug; 48(17):4655-4687. PubMed ID: 31294739 [TBL] [Abstract][Full Text] [Related]
15. Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors. Huang T; Liu Z; Yu F; Wang F; Li D; Fu L; Chen Y; Wang H; Xie Q; Yao S; Wu Y ACS Appl Mater Interfaces; 2020 Nov; 12(47):52635-52642. PubMed ID: 33185093 [TBL] [Abstract][Full Text] [Related]
17. Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Chen C; Wen Y; Hu X; Ji X; Yan M; Mai L; Hu P; Shan B; Huang Y Nat Commun; 2015 Apr; 6():6929. PubMed ID: 25906991 [TBL] [Abstract][Full Text] [Related]
18. Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. Share K; Cohn AP; Carter R; Rogers B; Pint CL ACS Nano; 2016 Oct; 10(10):9738-9744. PubMed ID: 27718549 [TBL] [Abstract][Full Text] [Related]
19. Boron-doped graphene as a promising anode for Na-ion batteries. Ling C; Mizuno F Phys Chem Chem Phys; 2014 Jun; 16(22):10419-24. PubMed ID: 24760182 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery. He K; Zhang ZY; Zhang FS Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]