These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34050019)

  • 1. Attaining the promise of plant gene editing at scale.
    Nasti RA; Voytas DF
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome editing in fruit, ornamental, and industrial crops.
    Ramirez-Torres F; Ghogare R; Stowe E; Cerdá-Bennasser P; Lobato-Gómez M; Williamson-Benavides BA; Giron-Calva PS; Hewitt S; Christou P; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):499-528. PubMed ID: 33825100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome editing of polyploid crops: prospects, achievements and bottlenecks.
    Schaart JG; van de Wiel CCM; Smulders MJM
    Transgenic Res; 2021 Aug; 30(4):337-351. PubMed ID: 33846956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter editing for the genetic improvement of crops.
    Shi L; Su J; Cho MJ; Song H; Dong X; Liang Y; Zhang Z
    J Exp Bot; 2023 Aug; 74(15):4349-4366. PubMed ID: 37204916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Outlook on Global Regulatory Landscape for Genome-Edited Crops.
    Ahmad A; Munawar N; Khan Z; Qusmani AT; Khan SH; Jamil A; Ashraf S; Ghouri MZ; Aslam S; Mubarik MS; Munir A; Sultan Q; Abd-Elsalam KA; Qari SH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of genome editing techniques to regulate gene expression in crops.
    Dong H
    BMC Plant Biol; 2024 Feb; 24(1):100. PubMed ID: 38331711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale genome editing in plants: approaches, applications, and future perspectives.
    Liu T; Zhang X; Li K; Yao Q; Zhong D; Deng Q; Lu Y
    Curr Opin Biotechnol; 2023 Feb; 79():102875. PubMed ID: 36610369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits.
    Scheben A; Edwards D
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):218-225. PubMed ID: 29752075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current and future editing reagent delivery systems for plant genome editing.
    Ran Y; Liang Z; Gao C
    Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR Variants for Gene Editing in Plants: Biosafety Risks and Future Directions.
    Movahedi A; Aghaei-Dargiri S; Li H; Zhuge Q; Sun W
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.