BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 34050176)

  • 1. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery.
    Behsaz B; Bode E; Gurevich A; Shi YN; Grundmann F; Acharya D; Caraballo-Rodríguez AM; Bouslimani A; Panitchpakdi M; Linck A; Guan C; Oh J; Dorrestein PC; Bode HB; Pevzner PA; Mohimani H
    Nat Commun; 2021 May; 12(1):3225. PubMed ID: 34050176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery.
    Mohimani H; Liu WT; Kersten RD; Moore BS; Dorrestein PC; Pevzner PA
    J Nat Prod; 2014 Aug; 77(8):1902-9. PubMed ID: 25116163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius.
    Park HM; Kim BG; Chang D; Malla S; Joo HS; Kim EJ; Park SJ; Sohng JK; Kim PI
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1213-22. PubMed ID: 22825833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics.
    Nikolouli K; Mossialos D
    Biotechnol Lett; 2012 Aug; 34(8):1393-403. PubMed ID: 22481301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain.
    Rounge TB; Rohrlack T; Nederbragt AJ; Kristensen T; Jakobsen KS
    BMC Genomics; 2009 Aug; 10():396. PubMed ID: 19706155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toolbox for Antibiotics Discovery from Microorganisms.
    Fisch KM; Schäberle TF
    Arch Pharm (Weinheim); 2016 Sep; 349(9):683-91. PubMed ID: 27311607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides.
    Royer M; Koebnik R; Marguerettaz M; Barbe V; Robin GP; Brin C; Carrere S; Gomez C; Hügelland M; Völler GH; Noëll J; Pieretti I; Rausch S; Verdier V; Poussier S; Rott P; Süssmuth RD; Cociancich S
    BMC Genomics; 2013 Sep; 14():658. PubMed ID: 24069909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product.
    Singh M; Chaudhary S; Sareen D
    J Biosci; 2017 Mar; 42(1):175-187. PubMed ID: 28229977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning-based method for prediction of macrocyclization patterns of polyketides and non-ribosomal peptides.
    Agrawal P; Mohanty D
    Bioinformatics; 2021 May; 37(5):603-611. PubMed ID: 33010151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides.
    Leclère V; Weber T; Jacques P; Pupin M
    Methods Mol Biol; 2016; 1401():209-32. PubMed ID: 26831711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites.
    Ansari MZ; Sharma J; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2008 Oct; 9():454. PubMed ID: 18950525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations.
    Miller IJ; Chevrette MG; Kwan JC
    Mar Drugs; 2017 Jun; 15(6):. PubMed ID: 28587290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive Synthetic-Bioinformatic Natural Product Cyclic Peptides Inspired by Nonribosomal Peptide Synthetase Gene Clusters from the Human Microbiome.
    Chu J; Vila-Farres X; Brady SF
    J Am Chem Soc; 2019 Oct; 141(40):15737-15741. PubMed ID: 31545899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective.
    Baltz RH
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):635-649. PubMed ID: 29288438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products.
    Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MS network-based screening for new antibiotics discovery.
    Koyama N; Tomoda H
    J Antibiot (Tokyo); 2019 Jan; 72(1):54-56. PubMed ID: 30353113
    [No Abstract]   [Full Text] [Related]  

  • 18. Full-length title: NRPPUR database search and in vitro analysis identify an NRPS-PKS biosynthetic gene cluster with a potential antibiotic effect.
    Fritz S; Rajaonison A; Chabrol O; Raoult D; Rolain JM; Merhej V
    BMC Bioinformatics; 2018 Dec; 19(1):463. PubMed ID: 30509188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics.
    Kaniusaite M; Tailhades J; Kittilä T; Fage CD; Goode RJA; Schittenhelm RB; Cryle MJ
    FEBS J; 2021 Jan; 288(2):507-529. PubMed ID: 32359003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerpa: A Tool for Discovering Biosynthetic Gene Clusters of Bacterial Nonribosomal Peptides.
    Kunyavskaya O; Tagirdzhanov AM; Caraballo-Rodríguez AM; Nothias LF; Dorrestein PC; Korobeynikov A; Mohimani H; Gurevich A
    Metabolites; 2021 Oct; 11(10):. PubMed ID: 34677408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.