These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34050188)

  • 21. Enhanced thermoelectric performance of In-doped and AgCuTe-alloyed SnTe through band engineering and endotaxial nanostructures.
    Peng P; Wang C; Li L; Li S; Chen J; Fan P; Du R; Si H; Cheng Z; Wang J
    Phys Chem Chem Phys; 2022 Nov; 24(44):27105-27113. PubMed ID: 36330965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional GeMnTe
    Li R; Zhang F; Ou W; Tan X; Zhu J; Ren D; Ang R
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38038336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping.
    Liu Z; Sun J; Mao J; Zhu H; Ren W; Zhou J; Wang Z; Singh DJ; Sui J; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5332-5337. PubMed ID: 29735697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Band Modification and Localized Lattice Engineering Leads to High Thermoelectric Performance in Ge and Bi Codoped SnTe-AgBiTe
    Nie C; Wang C; Xu Y; Liu Y; Niu X; Li S; Gong Y; Hou Y; Zhang X; Zhang D; Li D; Zhang Y; Tang G
    Small; 2023 Jul; 19(28):e2301298. PubMed ID: 36974580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosting Thermoelectric Properties of AgBi
    Wu Y; Su X; Yang D; Zhang Q; Tang X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4185-4191. PubMed ID: 33433997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics.
    Jiang B; Wang W; Liu S; Wang Y; Wang C; Chen Y; Xie L; Huang M; He J
    Science; 2022 Jul; 377(6602):208-213. PubMed ID: 35857539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Realizing the Ultralow Lattice Thermal Conductivity of Cu
    Zhao L; Han H; Lu Z; Yang J; Wu X; Ge B; Yu L; Shi Z; Karami AM; Dong S; Hussain S; Qiao G; Xu J
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe
    Gao W; Wang Z; Huang J; Liu Z
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18685-18692. PubMed ID: 29767496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe.
    Lou X; Li S; Chen X; Zhang Q; Deng H; Zhang J; Li D; Zhang X; Zhang Y; Zeng H; Tang G
    ACS Nano; 2021 May; 15(5):8204-8215. PubMed ID: 33852270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inverse-Perovskite Ba
    He X; Kimura S; Katase T; Tadano T; Matsuishi S; Minohara M; Hiramatsu H; Kumigashira H; Hosono H; Kamiya T
    Adv Sci (Weinh); 2024 Mar; 11(10):e2307058. PubMed ID: 38145354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides.
    Jood P; Ohta M
    Materials (Basel); 2015 Mar; 8(3):1124-1149. PubMed ID: 28787992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realizing High Thermoelectric Performance in p-Type SnSe Crystals via Convergence of Multiple Electronic Valence Bands.
    Siddique S; Gong Y; Abbas G; Yaqoob MM; Li S; Zulkifal S; Zhang Q; Hou Y; Chen G; Tang G
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4091-4099. PubMed ID: 35001609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying.
    Fu T; Xin J; Zhu T; Shen J; Fang T; Zhao X
    Sci Bull (Beijing); 2019 Jul; 64(14):1024-1030. PubMed ID: 36659802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing rare earth-free high entropy oxides with a tungsten bronze structure for thermoelectric applications.
    Jana SS; Maiti T
    Mater Horiz; 2023 May; 10(5):1848-1855. PubMed ID: 36880636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rationally Designing High-Performance Bulk Thermoelectric Materials.
    Tan G; Zhao LD; Kanatzidis MG
    Chem Rev; 2016 Oct; 116(19):12123-12149. PubMed ID: 27580481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High thermoelectric performance via hierarchical compositionally alloyed nanostructures.
    Zhao LD; Hao S; Lo SH; Wu CI; Zhou X; Lee Y; Li H; Biswas K; Hogan TP; Uher C; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2013 May; 135(19):7364-70. PubMed ID: 23647245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO.
    Tang J; Xu R; Zhang J; Li D; Zhou W; Li X; Wang Z; Xu F; Tang G; Chen G
    ACS Appl Mater Interfaces; 2019 May; 11(17):15543-15551. PubMed ID: 30964989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Thermoelectric Performance SnTe with a Segregated and Percolated Structure.
    Ma Z; Xu T; Li W; Cheng Y; Li J; Wei Y; Jiang Q; Luo Y; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9192-9202. PubMed ID: 35133800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoelectric Cu
    Hu H; Zhuang HL; Jiang Y; Shi J; Li JW; Cai B; Han Z; Pei J; Su B; Ge ZH; Zhang BP; Li JF
    Adv Mater; 2021 Oct; 33(43):e2103633. PubMed ID: 34494316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared via a green and facile hydrothermal method.
    Lu W; He T; Li S; Zuo X; Zheng Y; Lou X; Zhang J; Li D; Liu J; Tang G
    Nanoscale; 2020 Mar; 12(10):5857-5865. PubMed ID: 32101245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.