These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 34050192)
1. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Zekonyte U; Bacman SR; Smith J; Shoop W; Pereira CV; Tomberlin G; Stewart J; Jantz D; Moraes CT Nat Commun; 2021 May; 12(1):3210. PubMed ID: 34050192 [TBL] [Abstract][Full Text] [Related]
2. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model. Bacman SR; Williams SL; Hernandez D; Moraes CT Gene Ther; 2007 Sep; 14(18):1309-18. PubMed ID: 17597792 [TBL] [Abstract][Full Text] [Related]
3. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Shoop WK; Lape J; Trum M; Powell A; Sevigny E; Mischler A; Bacman SR; Fontanesi F; Smith J; Jantz D; Gorsuch CL; Moraes CT Nat Metab; 2023 Dec; 5(12):2169-2183. PubMed ID: 38036771 [TBL] [Abstract][Full Text] [Related]
4. Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease. Bacman SR; Williams SL; Duan D; Moraes CT Gene Ther; 2012 Nov; 19(11):1101-6. PubMed ID: 22130448 [TBL] [Abstract][Full Text] [Related]
5. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Gammage PA; Viscomi C; Simard ML; Costa ASH; Gaude E; Powell CA; Van Haute L; McCann BJ; Rebelo-Guiomar P; Cerutti R; Zhang L; Rebar EJ; Zeviani M; Frezza C; Stewart JB; Minczuk M Nat Med; 2018 Nov; 24(11):1691-1695. PubMed ID: 30250142 [TBL] [Abstract][Full Text] [Related]
6. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Silva-Pinheiro P; Nash PA; Van Haute L; Mutti CD; Turner K; Minczuk M Nat Commun; 2022 Feb; 13(1):750. PubMed ID: 35136065 [TBL] [Abstract][Full Text] [Related]
7. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Bayona-Bafaluy MP; Blits B; Battersby BJ; Shoubridge EA; Moraes CT Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14392-7. PubMed ID: 16179392 [TBL] [Abstract][Full Text] [Related]
8. MitoTALEN reduces mutant mtDNA load and restores tRNA Bacman SR; Kauppila JHK; Pereira CV; Nissanka N; Miranda M; Pinto M; Williams SL; Larsson NG; Stewart JB; Moraes CT Nat Med; 2018 Nov; 24(11):1696-1700. PubMed ID: 30250143 [TBL] [Abstract][Full Text] [Related]
9. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Hashimoto M; Bacman SR; Peralta S; Falk MJ; Chomyn A; Chan DC; Williams SL; Moraes CT Mol Ther; 2015 Oct; 23(10):1592-9. PubMed ID: 26159306 [TBL] [Abstract][Full Text] [Related]
10. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Mikhailov N; Hämäläinen RH Ann Biomed Eng; 2024 Sep; 52(9):2627-2640. PubMed ID: 36001180 [TBL] [Abstract][Full Text] [Related]
11. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Pereira CV; Moraes CT Front Biosci (Landmark Ed); 2017 Jan; 22(6):991-1010. PubMed ID: 27814659 [TBL] [Abstract][Full Text] [Related]
12. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. Tanaka M; Borgeld HJ; Zhang J; Muramatsu S; Gong JS; Yoneda M; Maruyama W; Naoi M; Ibi T; Sahashi K; Shamoto M; Fuku N; Kurata M; Yamada Y; Nishizawa K; Akao Y; Ohishi N; Miyabayashi S; Umemoto H; Muramatsu T; Furukawa K; Kikuchi A; Nakano I; Ozawa K; Yagi K J Biomed Sci; 2002; 9(6 Pt 1):534-41. PubMed ID: 12372991 [TBL] [Abstract][Full Text] [Related]
13. Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Bacman SR; Williams SL; Garcia S; Moraes CT Gene Ther; 2010 Jun; 17(6):713-20. PubMed ID: 20220783 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. Nissanka N; Moraes CT EMBO Rep; 2020 Mar; 21(3):e49612. PubMed ID: 32073748 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. Gammage PA; Rorbach J; Vincent AI; Rebar EJ; Minczuk M EMBO Mol Med; 2014 Apr; 6(4):458-66. PubMed ID: 24567072 [TBL] [Abstract][Full Text] [Related]
16. Altering the balance between healthy and mutated mitochondrial DNA. Smith PM; Lightowlers RN J Inherit Metab Dis; 2011 Apr; 34(2):309-13. PubMed ID: 20506041 [TBL] [Abstract][Full Text] [Related]
17. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. Tonin Y; Heckel AM; Vysokikh M; Dovydenko I; Meschaninova M; Rötig A; Munnich A; Venyaminova A; Tarassov I; Entelis N J Biol Chem; 2014 May; 289(19):13323-34. PubMed ID: 24692550 [TBL] [Abstract][Full Text] [Related]
18. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Lee S; Lee H; Baek G; Namgung E; Park JM; Kim S; Hong S; Kim JS Genome Biol; 2022 Oct; 23(1):211. PubMed ID: 36224582 [TBL] [Abstract][Full Text] [Related]