These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34050203)

  • 1. Identification of coronary calcifications in optical coherence tomography imaging using deep learning.
    Avital Y; Madar A; Arnon S; Koifman E
    Sci Rep; 2021 May; 11(1):11269. PubMed ID: 34050203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histopathological validation of optical frequency domain imaging to quantify various types of coronary calcifications.
    Saita T; Fujii K; Hao H; Imanaka T; Shibuya M; Fukunaga M; Miki K; Tamaru H; Horimatsu T; Nishimura M; Sumiyoshi A; Kawakami R; Naito Y; Kajimoto N; Hirota S; Masuyama T
    Eur Heart J Cardiovasc Imaging; 2017 Mar; 18(3):342-349. PubMed ID: 27076364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images.
    Gharaibeh Y; Lee J; Zimin VN; Kolluru C; Dallan LAP; Pereira GTR; Vergara-Martel A; Kim JN; Hoori A; Dong P; Gamage PT; Gu L; Bezerra HG; Al-Kindi S; Wilson DL
    Sci Rep; 2023 Oct; 13(1):18110. PubMed ID: 37872298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of calcium burden by coronary CT angiography compared to optical coherence tomography.
    Monizzi G; Sonck J; Nagumo S; Buytaert D; Van Hoe L; Grancini L; Bartorelli AL; Vanhoenacker P; Simons P; Bladt O; Wyffels E; De Bruyne B; Andreini D; Collet C
    Int J Cardiovasc Imaging; 2020 Dec; 36(12):2393-2402. PubMed ID: 33205340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward reliable calcification detection: calibration of uncertainty in object detection from coronary optical coherence tomography images.
    Liu H; Li X; Bamba AL; Song X; Brott BC; Litovsky SH; Gan Y
    J Biomed Opt; 2023 Mar; 28(3):036008. PubMed ID: 36992694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography.
    Precht H; Broersen A; Kitslaar PH; Dijkstra J; Gerke O; Thygesen J; Egstrup K; Leth PM; Hardt-Madsen M; Nielsen B; Falk E; Lambrechtsen J
    Cardiovasc Pathol; 2019; 39():25-29. PubMed ID: 30597423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection.
    Jamil Z; Tearney G; Bruining N; Sihan K; van Soest G; Ligthart J; van Domburg R; Bouma B; Regar E
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):39-51. PubMed ID: 22639296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic coronary calcium scoring using noncontrast and contrast CT images.
    Yang G; Chen Y; Ning X; Sun Q; Shu H; Coatrieux JL
    Med Phys; 2016 May; 43(5):2174. PubMed ID: 27147329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.
    Fischer AM; Eid M; De Cecco CN; Gulsun MA; van Assen M; Nance JW; Sahbaee P; De Santis D; Bauer MJ; Jacobs BE; Varga-Szemes A; Kabakus IM; Sharma P; Jackson LJ; Schoepf UJ
    J Thorac Imaging; 2020 May; 35 Suppl 1():S49-S57. PubMed ID: 32168163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. the Does Optical Coherence Tomography Optimize Revascularization (DOCTOR) fusion study.
    Hebsgaard L; Nielsen TM; Tu S; Krusell LR; Maeng M; Veien KT; Raungaard B; Terkelsen CJ; Kaltoft A; Reiber JH; Lassen JF; Christiansen EH; Holm NR
    Int J Cardiol; 2015 Mar; 182():272-8. PubMed ID: 25585362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of morphological assessment of coronary artery calcification with electrocardiography-gated non-contrast computed tomography: a comparative study with optical coherence tomography.
    Takahashi Y; Toba T; Otake H; Fukuyama Y; Nakano S; Matsuoka Y; Tanimura K; Izawa Y; Kawamori H; Kono AK; Fujiwara S; Hirata KI
    Int J Cardiovasc Imaging; 2021 Apr; 37(4):1445-1453. PubMed ID: 33151511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of a new generation intracoronary optical coherence tomography imaging system with fast pullback.
    Nishi T; Kume T; Yamada R; Koto S; Sasahira Y; Okamoto H; Tamada T; Koyama T; Imai K; Neishi Y; Ughi GJ; Uemura S
    Catheter Cardiovasc Interv; 2023 Feb; 101(3):520-527. PubMed ID: 36740230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.
    Ughi GJ; Verjans J; Fard AM; Wang H; Osborn E; Hara T; Mauskapf A; Jaffer FA; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):259-68. PubMed ID: 25341407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Invasive and non-invasive imaging analysis for calcified coronary artery lesions].
    Amabile N; Bressollette E; Souteyrand G; Landolff Q; Veugeois A; Honton B
    Ann Cardiol Angeiol (Paris); 2022 Dec; 71(6):372-380. PubMed ID: 36220707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography.
    Wang X; Matsumura M; Mintz GS; Lee T; Zhang W; Cao Y; Fujino A; Lin Y; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):869-879. PubMed ID: 28797408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium evaluation using coronary computed tomography in combination with optical coherence tomography.
    Kurogi K; Ishii M; Ikebe S; Kaichi R; Takae M; Mori T; Komaki S; Yamamoto N; Tsujita K
    Int J Cardiovasc Imaging; 2023 Sep; 39(9):1815-1824. PubMed ID: 37289332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serial Assessment of Tissue Precursors and Progression of Coronary Calcification Analyzed by Fusion of IVUS and OCT: 5-Year Follow-Up of Scaffolded and Nonscaffolded Arteries.
    Zeng Y; Tateishi H; Cavalcante R; Tenekecioglu E; Suwannasom P; Sotomi Y; Collet C; Nie S; Jonker H; Dijkstra J; Radu MD; Räber L; McClean DR; van Geuns RJ; Christiansen EH; Fahrni T; Koolen J; Onuma Y; Bruining N; Serruys PW
    JACC Cardiovasc Imaging; 2017 Oct; 10(10 Pt A):1151-1161. PubMed ID: 28330651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of optical coherence tomography-defined thin-cap fibroatheroma in the coronary artery using deep learning.
    Min HS; Yoo JH; Kang SJ; Lee JG; Cho H; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ
    EuroIntervention; 2020 Aug; 16(5):404-412. PubMed ID: 31718998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary Calcification Optical Coherence Tomography-Another Brick in the Wall.
    Abdul-Kafi OS; Vidovich MI
    Am J Cardiol; 2024 Apr; 217():167-168. PubMed ID: 38490336
    [No Abstract]   [Full Text] [Related]  

  • 20. A formula to calculate the contrast volume required for optimal imaging quality in optical coherence tomography with non-occlusive technique.
    Gutiérrez-Chico JL; Cortés C; Schincariol M; Jaguszewski M
    Cardiol J; 2018; 25(5):574-581. PubMed ID: 30246237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.