These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 34050230)
1. Cartilage structure increases swimming efficiency of underwater robots. Yurugi M; Shimanokami M; Nagai T; Shintake J; Ikemoto Y Sci Rep; 2021 May; 11(1):11288. PubMed ID: 34050230 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Russo RS; Blemker SS; Fish FE; Bart-Smith H Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094 [TBL] [Abstract][Full Text] [Related]
3. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research. Raj A; Thakur A Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001 [TBL] [Abstract][Full Text] [Related]
4. Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea). Huang W; Hongjamrassilp W; Jung JY; Hastings PA; Lubarda VA; McKittrick J Acta Biomater; 2017 Mar; 51():393-407. PubMed ID: 28069513 [TBL] [Abstract][Full Text] [Related]
5. The evolution of underwater flight: The redistribution of pectoral fin rays, in manta rays and their relatives (Myliobatidae). Hall KC; Hundt PJ; Swenson JD; Summers AP; Crow KD J Morphol; 2018 Aug; 279(8):1155-1170. PubMed ID: 29878395 [TBL] [Abstract][Full Text] [Related]
6. Batoid locomotion: effects of speed on pectoral fin deformation in the little skate, Di Santo V; Blevins EL; Lauder GV J Exp Biol; 2017 Feb; 220(Pt 4):705-712. PubMed ID: 27965272 [TBL] [Abstract][Full Text] [Related]
7. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins. Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary multiobjective design of a flexible caudal fin for robotic fish. Clark AJ; Tan X; McKinley PK Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric fin shape changes swimming dynamics of ancient marine reptiles' soft robophysical models. Sprumont H; Allione F; Schwab F; Wang B; Mucignat C; Lunati I; Scheyer T; Ijspeert A; Jusufi A Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38626775 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Fluidic Loading on Underwater Contact Sensing with Robotic Fins and Beams. Kahn JC; Tangorra JL IEEE Trans Haptics; 2016; 9(2):184-95. PubMed ID: 26441453 [TBL] [Abstract][Full Text] [Related]
11. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi. Macesic LJ; Mulvaney D; Blevins EL Zoology (Jena); 2013 Jun; 116(3):144-50. PubMed ID: 23477972 [TBL] [Abstract][Full Text] [Related]
12. Bending continuous structures with SMAs: a novel robotic fish design. Rossi C; Colorado J; Coral W; Barrientos A Bioinspir Biomim; 2011 Dec; 6(4):045005. PubMed ID: 22126900 [TBL] [Abstract][Full Text] [Related]
13. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism. Liao P; Zhang S; Sun D Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705 [TBL] [Abstract][Full Text] [Related]
14. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi. Blevins EL; Lauder GV J Exp Biol; 2012 Sep; 215(Pt 18):3231-41. PubMed ID: 22693031 [TBL] [Abstract][Full Text] [Related]
15. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle. Wang R; Zhang C; Zhang Y; Yang L; Tan W; Qin H; Wang F; Liu L Soft Robot; 2024 Oct; 11(5):845-856. PubMed ID: 38407844 [TBL] [Abstract][Full Text] [Related]
16. Design and development of the efficient anguilliform swimming robot- MAR. Struebig K; Bayat B; Eckert P; Looijestijn A; Lueth TC; Ijspeert AJ Bioinspir Biomim; 2020 Mar; 15(3):035001. PubMed ID: 31940595 [TBL] [Abstract][Full Text] [Related]
17. Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot. Berlinger F; Saadat M; Haj-Hariri H; Lauder GV; Nagpal R Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33264757 [TBL] [Abstract][Full Text] [Related]
18. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Shintake J; Cacucciolo V; Shea H; Floreano D Soft Robot; 2018 Aug; 5(4):466-474. PubMed ID: 29957131 [TBL] [Abstract][Full Text] [Related]
19. Design and experimental evaluation of the novel undulatory propulsors for biomimetic underwater robots. Li Y; Chen L; Wang Y; Ren C Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34198281 [TBL] [Abstract][Full Text] [Related]
20. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion. Liu H; Curet O Bioinspir Biomim; 2018 Jul; 13(5):056006. PubMed ID: 29911657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]