These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34050249)
1. Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Wang R; Lorantfy B; Fusco S; Olsson L; Franzén CJ Sci Rep; 2021 May; 11(1):11293. PubMed ID: 34050249 [TBL] [Abstract][Full Text] [Related]
2. Improving the fermentation performance of Saccharomyces cerevisiae by laccase during ethanol production from steam-exploded wheat straw at high-substrate loadings. Alvira P; Moreno AD; Ibarra D; Sáez F; Ballesteros M Biotechnol Prog; 2013; 29(1):74-82. PubMed ID: 23143932 [TBL] [Abstract][Full Text] [Related]
3. In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Moreno AD; Tomás-Pejó E; Ibarra D; Ballesteros M; Olsson L Bioresour Technol; 2013 Sep; 143():337-43. PubMed ID: 23811522 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. De La Torre M; Martín-Sampedro R; Fillat Ú; Eugenio ME; Blánquez A; Hernández M; Arias ME; Ibarra D J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1561-1573. PubMed ID: 28913738 [TBL] [Abstract][Full Text] [Related]
5. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Moreno AD; Ibarra D; Ballesteros I; González A; Ballesteros M Bioresour Technol; 2013 May; 135():239-45. PubMed ID: 23265821 [TBL] [Abstract][Full Text] [Related]
6. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
7. Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Moreno AD; Tomás-Pejó E; Ibarra D; Ballesteros M; Olsson L Biotechnol Biofuels; 2013 Nov; 6(1):160. PubMed ID: 24219973 [TBL] [Abstract][Full Text] [Related]
8. Effect of steam explosion on waste copier paper alone and in a mixed lignocellulosic substrate on saccharification and fermentation. Elliston A; Wilson DR; Wellner N; Collins SRA; Roberts IN; Waldron KW Bioresour Technol; 2015; 187():136-143. PubMed ID: 25846183 [TBL] [Abstract][Full Text] [Related]
9. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775 [TBL] [Abstract][Full Text] [Related]
10. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. Ehsanipour M; Suko AV; Bura R J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903 [TBL] [Abstract][Full Text] [Related]
11. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Petersson A; Lidén G Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372 [TBL] [Abstract][Full Text] [Related]
12. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Tomás-Pejó E; Olsson L Microb Biotechnol; 2015 Nov; 8(6):999-1005. PubMed ID: 25989314 [TBL] [Abstract][Full Text] [Related]
13. Ethanol production by Saccharomyces cerevisiae using lignocellulosic hydrolysate from Chrysanthemum waste degradation. Quevedo-Hidalgo B; Monsalve-Marín F; Narváez-Rincón PC; Pedroza-Rodríguez AM; Velásquez-Lozano ME World J Microbiol Biotechnol; 2013 Mar; 29(3):459-66. PubMed ID: 23117675 [TBL] [Abstract][Full Text] [Related]
14. Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Moreno AD; Ibarra D; Fernández JL; Ballesteros M Bioresour Technol; 2012 Feb; 106():101-9. PubMed ID: 22197073 [TBL] [Abstract][Full Text] [Related]
15. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768 [TBL] [Abstract][Full Text] [Related]
16. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis. Blomqvist J; South E; Tiukova I; Momeni MH; Hansson H; Ståhlberg J; Horn SJ; Schnürer J; Passoth V Lett Appl Microbiol; 2011 Jul; 53(1):73-8. PubMed ID: 21535044 [TBL] [Abstract][Full Text] [Related]
17. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Huang S; Liu T; Peng B; Geng A Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665 [TBL] [Abstract][Full Text] [Related]
18. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Parawira W; Tekere M Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164 [TBL] [Abstract][Full Text] [Related]
19. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]