These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34050718)
1. (Poly)phenol-Rich Diets in the Management of Endothelial Dysfunction in Diabetes Mellitus: Biological Properties in Cultured Endothelial Cells. Rocha S; Oskolkova O; de Freitas V; Reis A Mol Nutr Food Res; 2021 Aug; 65(15):e2001130. PubMed ID: 34050718 [TBL] [Abstract][Full Text] [Related]
2. Going "Green" in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary Polyphenols. Reis A; Rocha S; de Freitas V J Clin Med; 2021 Apr; 10(7):. PubMed ID: 33916712 [TBL] [Abstract][Full Text] [Related]
3. Type 2 Diabetes mellitus alters the cargo of (poly)phenol metabolome and the oxidative status in circulating lipoproteins. Reis A; Rocha S; Dias IH; Costa R; Soares R; Sánchez-Quesada JL; Perez A; de Freitas V Redox Biol; 2023 Feb; 59():102572. PubMed ID: 36516720 [TBL] [Abstract][Full Text] [Related]
4. Reversibility of endothelial dysfunction in diabetes: role of polyphenols. Suganya N; Bhakkiyalakshmi E; Sarada DV; Ramkumar KM Br J Nutr; 2016 Jul; 116(2):223-46. PubMed ID: 27264638 [TBL] [Abstract][Full Text] [Related]
5. At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Kerimi A; Williamson G Mol Nutr Food Res; 2016 Aug; 60(8):1770-88. PubMed ID: 26887821 [TBL] [Abstract][Full Text] [Related]
6. Dietary (poly)phenols as modulators of the biophysical properties in endothelial cell membranes: its impact on nitric oxide bioavailability in hypertension. Reis A; Rocha BS; Laranjinha J; de Freitas V FEBS Lett; 2024 Sep; 598(17):2190-2210. PubMed ID: 38281810 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. Munir KM; Chandrasekaran S; Gao F; Quon MJ Am J Physiol Endocrinol Metab; 2013 Sep; 305(6):E679-86. PubMed ID: 23900418 [TBL] [Abstract][Full Text] [Related]
8. Cranberry (poly)phenol metabolites correlate with improvements in vascular function: A double-blind, randomized, controlled, dose-response, crossover study. Rodriguez-Mateos A; Feliciano RP; Boeres A; Weber T; Dos Santos CN; Ventura MR; Heiss C Mol Nutr Food Res; 2016 Oct; 60(10):2130-2140. PubMed ID: 27242317 [TBL] [Abstract][Full Text] [Related]
9. The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Ditano-Vázquez P; Torres-Peña JD; Galeano-Valle F; Pérez-Caballero AI; Demelo-Rodríguez P; Lopez-Miranda J; Katsiki N; Delgado-Lista J; Alvarez-Sala-Walther LA Nutrients; 2019 Nov; 11(11):. PubMed ID: 31752333 [TBL] [Abstract][Full Text] [Related]
10. Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies. Visvanathan R; Williamson G Crit Rev Food Sci Nutr; 2023; 63(14):2178-2202. PubMed ID: 34496701 [TBL] [Abstract][Full Text] [Related]
11. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Iglesias-Aguirre CE; Cortés-Martín A; Ávila-Gálvez MÁ; Giménez-Bastida JA; Selma MV; González-Sarrías A; Espín JC Food Funct; 2021 Nov; 12(21):10324-10355. PubMed ID: 34558584 [TBL] [Abstract][Full Text] [Related]
13. Flavonols in the Prevention of Diabetes-induced Vascular Dysfunction. Leo CH; Woodman OL J Cardiovasc Pharmacol; 2015 Jun; 65(6):532-44. PubMed ID: 25387248 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Andriantsitohaina R; Auger C; Chataigneau T; Étienne-Selloum N; Li H; Martínez MC; Schini-Kerth VB; Laher I Br J Nutr; 2012 Nov; 108(9):1532-49. PubMed ID: 22935143 [TBL] [Abstract][Full Text] [Related]
15. Polyphenols: Plant Sources and Food Industry Applications. Marranzano M; Rosa RL; Malaguarnera M; Palmeri R; Tessitori M; Barbera AC Curr Pharm Des; 2018; 24(35):4125-4130. PubMed ID: 30398104 [TBL] [Abstract][Full Text] [Related]
16. Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008-2014). Ziauddeen N; Rosi A; Del Rio D; Amoutzopoulos B; Nicholson S; Page P; Scazzina F; Brighenti F; Ray S; Mena P Eur J Nutr; 2019 Dec; 58(8):3183-3198. PubMed ID: 30448880 [TBL] [Abstract][Full Text] [Related]
17. Vascular protection by dietary polyphenols. Stoclet JC; Chataigneau T; Ndiaye M; Oak MH; El Bedoui J; Chataigneau M; Schini-Kerth VB Eur J Pharmacol; 2004 Oct; 500(1-3):299-313. PubMed ID: 15464042 [TBL] [Abstract][Full Text] [Related]
18. Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Ho KKHY; Ferruzzi MG; Wightman JD Nutr Rev; 2020 Feb; 78(2):145-174. PubMed ID: 31532485 [TBL] [Abstract][Full Text] [Related]
19. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Loke WM; Proudfoot JM; Hodgson JM; McKinley AJ; Hime N; Magat M; Stocker R; Croft KD Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):749-57. PubMed ID: 20093625 [TBL] [Abstract][Full Text] [Related]
20. Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: a review of the COST Action POSITIVe activities. Gibney ER; Milenkovic D; Combet E; Ruskovska T; Greyling A; González-Sarrías A; de Roos B; Tomás-Barberán F; Morand C; Rodriguez-Mateos A Eur J Nutr; 2019 Nov; 58(Suppl 2):37-47. PubMed ID: 31492975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]