These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34050943)

  • 1. Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping.
    Giannini-Kurina F; Hang S; Rampoldi AE; Paccioretti P; Balzarini M
    J Environ Qual; 2021 Jul; 50(4):934-944. PubMed ID: 34050943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption characteristics of atrazine and imazethapyr in soils of new zealand: importance of independently determined sorption data.
    Ahmad R; Rahman A
    J Agric Food Chem; 2009 Nov; 57(22):10866-75. PubMed ID: 19874020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of herbicides in relation to soil variability and landscape position.
    Farenhorst A; Muc D; Monreal C; Florinski I
    J Environ Sci Health B; 2001 Jul; 36(4):379-87. PubMed ID: 11495016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific data on herbicide soil retention and ancillary environmental variables.
    Giannini Kurina F; Balzarini M; Rampoldi EA; Hang S
    Data Brief; 2019 Dec; 27():104754. PubMed ID: 31763407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content.
    Ouyang W; Zhao X; Tysklind M; Hao F
    Water Res; 2016 Apr; 92():156-63. PubMed ID: 26852289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of atrazine sorption coefficients in soils using mid-infrared spectroscopy and partial least-squares analysis.
    Kookana RS; Janik LJ; Forouzangohar M; Forrester ST
    J Agric Food Chem; 2008 May; 56(9):3208-13. PubMed ID: 18393436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.
    Bedmar F; Daniel PE; Costa JL; Giménez D
    Environ Toxicol Chem; 2011 Sep; 30(9):1990-6. PubMed ID: 21692102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atrazine and metribuzin sorption in soils of the Argentinean humid pampas.
    Daniel PE; Bedmar F; Costa JL; Aparicio VC
    Environ Toxicol Chem; 2002 Dec; 21(12):2567-72. PubMed ID: 12463550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption kinetics of atrazine and diuron in soils from southern Brazil.
    Inoue MH; Oliveira RS; Regitano JB; Tormena CA; Constantin J; Tornisielo VL
    J Environ Sci Health B; 2004 May; 39(4):589-601. PubMed ID: 15473639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution of sorption and desorption process of
    Mendes KF; Wei MCF; Furtado IF; Takeshita V; Pissolito JP; Molin JP; Tornisielo VL
    Chemosphere; 2021 Feb; 264(Pt 1):128494. PubMed ID: 33022507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-scale spatial variability of atrazine and dinoseb adsorption parameters in an alluvial soil.
    Mermoud A; Martins JM; Zhang D; Favre AC
    J Environ Qual; 2008; 37(5):1929-36. PubMed ID: 18689754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dissolved organic matter from sewage sludge on the atrazine sorption by soils.
    Ling W; Xu J; Gao Y
    Sci China C Life Sci; 2005 May; 48 Suppl 1():57-66. PubMed ID: 16089330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption and predicted mobility of herbicides in Baltic soils.
    Sakaliene O; Papiernik SK; Koskinen WC; Spokas KA
    J Environ Sci Health B; 2007 Aug; 42(6):641-7. PubMed ID: 17701699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herbicide sorption by immersed soils: stoichiometry and the law of mass action in support of predictive kinetics.
    Gamble DS
    Environ Sci Technol; 2009 Mar; 43(6):1930-4. PubMed ID: 19368194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of acetochlor, atrazine, and S-metolachlor in surface and subsurface horizons of 2 typic argiudolls under no-tillage.
    Bedmar F; Gimenez D; Costa JL; Daniel PE
    Environ Toxicol Chem; 2017 Nov; 36(11):3065-3073. PubMed ID: 28577318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption-desorption of atrazine and diuron in soils from southern Brazil.
    Inoue MH; Oliveira RS; Regitano JB; Tormena CA; Constantin J; Tornisielo VL
    J Environ Sci Health B; 2006; 41(5):605-21. PubMed ID: 16785170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term vinasse application enhanced the initial dissipation of atrazine and ametryn in a sugarcane field in Tucumán, Argentina.
    Portocarrero RLÁ; Chalco Vera J; Vallejo JI; De Gerónimo E; Costa JL; Aparicio VC
    Integr Environ Assess Manag; 2024 Jul; 20(4):1075-1086. PubMed ID: 38044706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia.
    Hiller E; Krascsenits Z; Cernanský S
    Bull Environ Contam Toxicol; 2008 May; 80(5):412-6. PubMed ID: 18401535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils.
    Yang F; Zhang W; Li J; Wang S; Tao Y; Wang Y; Zhang Y
    Chemosphere; 2017 Dec; 189():507-516. PubMed ID: 28961536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.