These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34050979)

  • 21. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction.
    Liang W; Sun Y; Liang Z; Li D; Wang Y; Qin W; Jiang L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16753-16761. PubMed ID: 32119778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Molecular Catalysis Identifying Activation Energy of the Intermediate Product and Rate-Limiting Step in Plasmonic Photocatalysis.
    Li W; Miao J; Peng T; Lv H; Wang JG; Li K; Zhu Y; Li D
    Nano Lett; 2020 Apr; 20(4):2507-2513. PubMed ID: 32182075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Plasmon-Promoted Organic Transformations Using Silver-Based Catalysts.
    Liang C; Lu ZA; Wu J; Chen MX; Zhang Y; Zhang B; Gao GL; Li S; Xu P
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54266-54284. PubMed ID: 33226767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Au-Cu nanostructures: Synthesis and applications.
    Mi X; Chen H; Li J; Qiao H
    Front Chem; 2023; 11():1153936. PubMed ID: 36970414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis.
    Ge H; Kuwahara Y; Yamashita H
    Chem Commun (Camb); 2022 Jul; 58(61):8466-8479. PubMed ID: 35861347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mild Deoxygenation of Sulfoxides over Plasmonic Molybdenum Oxide Hybrid with Dramatic Activity Enhancement under Visible Light.
    Kuwahara Y; Yoshimura Y; Haematsu K; Yamashita H
    J Am Chem Soc; 2018 Jul; 140(29):9203-9210. PubMed ID: 29909632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination.
    Peiris E; Hanauer S; Knapas K; Camargo PHC
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Noble Plasmonic Metal-Based Photocatalysts.
    Sayed M; Yu J; Liu G; Jaroniec M
    Chem Rev; 2022 Jun; 122(11):10484-10537. PubMed ID: 35438967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.
    Robatjazi H; Zhao H; Swearer DF; Hogan NJ; Zhou L; Alabastri A; McClain MJ; Nordlander P; Halas NJ
    Nat Commun; 2017 Jun; 8(1):27. PubMed ID: 28638073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Photocurrent Enhancement from Porphyrin Molecules on Plasmonic Copper Arrays: Beneficial Utilization of Copper Nanoanntenae on Plasmonic Photoelectric Conversion Systems.
    Sugawa K; Yamaguchi D; Tsunenari N; Uchida K; Tahara H; Takeda H; Tokuda K; Jin S; Kusaka Y; Fukuda N; Ushijima H; Akiyama T; Watanuki Y; Nishimiya N; Otsuki J; Yamada S
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):750-762. PubMed ID: 28001029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalyst-On-Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co-Photocatalyst for Efficient Light-To-Chemical Transformation.
    Chong C; Boong SK; Raja Mogan T; Lee JK; Ang ZZ; Li H; Lee HK
    Small; 2024 Jun; 20(24):e2309983. PubMed ID: 38174596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation Energies of Plasmonic Catalysts.
    Kim Y; Dumett Torres D; Jain PK
    Nano Lett; 2016 May; 16(5):3399-407. PubMed ID: 27064549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversibly Modulating Plasmon-mediated Chemical Reaction via Electrode Potential on Reliable Copper Nanoelectrode.
    Ghimire G; Guo J; Halmagian R; He J
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202302215. PubMed ID: 36929628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.
    Li K; Hogan NJ; Kale MJ; Halas NJ; Nordlander P; Christopher P
    Nano Lett; 2017 Jun; 17(6):3710-3717. PubMed ID: 28481115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.