These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34051320)

  • 21. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding flow properties of mannitol powder at a range of temperature and humidity.
    Salehi H; Karde V; Hajmohammadi H; Dissanayake S; Larsson SH; Heng JYY; Bradley M
    Int J Pharm; 2021 Mar; 596():120244. PubMed ID: 33484920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Process and formulation characterizations of the thermal adhesion granulation (TAG) process for improving granular properties.
    Lin HL; Ho HO; Chen CC; Yeh TS; Sheu MT
    Int J Pharm; 2008 Jun; 357(1-2):206-12. PubMed ID: 18353570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling.
    Chattoraj S; Shi L; Sun CC
    J Pharm Sci; 2011 Nov; 100(11):4943-52. PubMed ID: 21698602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Starch flow behavior alone and under different glidants action using the shear cell method.
    Salústio PJ; Monteiro MF; Nunes T; Sousa E Silva JP; Costa PJ
    Drug Dev Ind Pharm; 2021 Sep; 47(9):1502-1511. PubMed ID: 34758690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of mannitol granules and powder: A comparative study using two flowability testers.
    Takeuchi Y; Tomita T; Kuroda J; Kageyu A; Yonekura C; Hiramura Y; Tahara K; Takeuchi H
    Int J Pharm; 2018 Aug; 547(1-2):106-113. PubMed ID: 29803796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DEM based computational model to predict moisture induced cohesion in pharmaceutical powders.
    Mukherjee R; Mao C; Chattoraj S; Chaudhuri B
    Int J Pharm; 2018 Jan; 536(1):301-309. PubMed ID: 29217469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
    Yu S; Gururajan B; Reynolds G; Roberts R; Adams MJ; Wu CY
    Int J Pharm; 2012 May; 428(1-2):39-47. PubMed ID: 22402475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating.
    Zhou Q; Armstrong B; Larson I; Stewart PJ; Morton DA
    J Pharm Sci; 2010 Feb; 99(2):969-81. PubMed ID: 19795479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties.
    Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of traditional and novel tableting excipients: physical and compaction properties.
    Hentzschel CM; Sakmann A; Leopold CS
    Pharm Dev Technol; 2012; 17(6):649-53. PubMed ID: 21740091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.
    Jagia M; Trivedi M; Dave RH
    AAPS PharmSciTech; 2016 Aug; 17(4):995-1006. PubMed ID: 26729530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of flow and bulk density of pharmaceutical powders using surface modification.
    Jallo LJ; Ghoroi C; Gurumurthy L; Patel U; Davé RN
    Int J Pharm; 2012 Feb; 423(2):213-25. PubMed ID: 22197769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Time Consolidation Effect of Pharmaceutical Powders.
    Thool P; Stancill C; Bui M; Mao C
    Pharm Res; 2022 Dec; 39(12):3345-3357. PubMed ID: 36180609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water-solid interactions. IV. Influence of moisture sorption on the compaction of film-coated particles.
    Stubberud L; Eriksson M; Kordnejad K; Graffner C
    Pharm Dev Technol; 1998 May; 3(2):141-51. PubMed ID: 9653751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of particle properties on the flowability of ibuprofen powders.
    Liu LX; Marziano I; Bentham AC; Litster JD; White ET; Howes T
    Int J Pharm; 2008 Oct; 362(1-2):109-17. PubMed ID: 18652883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A predictive integrated framework based on the radial basis function for the modelling of the flow of pharmaceutical powders.
    Alshafiee M; AlAlaween WH; Markl D; Soundaranathan M; Almajaan A; Walton K; Blunt L; Asare-Addo K
    Int J Pharm; 2019 Sep; 568():118542. PubMed ID: 31330171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of colloidal silicon dioxide and moisture on powder flow properties: Predicting in-process performance using image-based analysis.
    Blanco D; Antikainen O; Räikkönen H; Yliruusi J; Juppo AM
    Int J Pharm; 2021 Mar; 597():120344. PubMed ID: 33545294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients.
    Tran DT; Majerová D; Veselý M; Kulaviak L; Ruzicka MC; Zámostný P
    Int J Pharm; 2019 Feb; 556():383-394. PubMed ID: 30529657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.