These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34051320)

  • 41. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY
    Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions.
    Yu W; Muteki K; Zhang L; Kim G
    J Pharm Sci; 2011 Jan; 100(1):284-93. PubMed ID: 20572055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.
    Alyami H; Dahmash E; Bowen J; Mohammed AR
    PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the die compaction of powders used in pharmaceutics.
    Aryanpour G; Farzaneh M
    Pharm Dev Technol; 2018 Jul; 23(6):628-635. PubMed ID: 28631521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a dual approach to assess powder flow from avalanching behavior.
    Lee YS; Poynter R; Podczeck F; Newton JM
    AAPS PharmSciTech; 2000 Jul; 1(3):E21. PubMed ID: 14727907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microparticle surface layering through dry coating: impact of moisture content and process parameters on the properties of orally disintegrating tablets.
    Alyami H; Koner J; Dahmash EZ; Bowen J; Terry D; Mohammed AR
    J Pharm Pharmacol; 2017 Jul; 69(7):807-822. PubMed ID: 27696423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology].
    Zeng RG; Jiang QY; Liao ZG; Zhao GW; Luo Y; Luo J; Lv D
    Zhongguo Zhong Yao Za Zhi; 2016 Jun; 41(12):2245-2249. PubMed ID: 28901067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of storage relative humidity on aerosolization of co-spray dried powders of hygroscopic kanamycin with the hydrophobic drug rifampicin.
    Momin MAM; Tucker IG; Das SC
    Drug Dev Ind Pharm; 2019 Jul; 45(7):1205-1213. PubMed ID: 30990097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.
    Shi L; Feng Y; Sun CC
    Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose.
    Tay JYS; Kok BWT; Liew CV; Heng PWS
    J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flowability analysis of uranium dioxide powder at different temperatures containing different lubricants.
    Santana HH; Maier G; Ródenas J
    Appl Radiat Isot; 2011 Aug; 69(8):1162-4. PubMed ID: 21075001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Leucine enhances the dispersibility of trehalose-containing spray-dried powders on exposure to a high-humidity environment.
    Wang Z; Wang H; Vehring R
    Int J Pharm; 2021 May; 601():120561. PubMed ID: 33811968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients.
    Jonat S; Hasenzahl S; Gray A; Schmidt PC
    Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression.
    Vodáčková P; Vraníková B; Svačinová P; Franc A; Elbl J; Muselík J; Kubalák R; Solný T
    Biomed Res Int; 2018; 2018():2739428. PubMed ID: 29850496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stress-Dependent Particle Interactions of Magnesium Aluminometasilicates as Their Performance Factor in Powder Flow and Compaction Applications.
    Komínová P; Kulaviak L; Zámostný P
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow rate and flow equation of pharmaceutical free-flowable powder excipients.
    Sklubalová Z; Zatloukal Z
    Pharm Dev Technol; 2013 Feb; 18(1):106-11. PubMed ID: 22149908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.