BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34051575)

  • 1. GDI2 is a target of paclitaxel that affects tumorigenesis of prostate cancer via the p75NTR signaling pathway.
    Liu C; Wang W; Lin P; Xie H; Jiang S; Jia H; Li R; Wang N; Yu X
    Biochem Biophys Res Commun; 2021 Jul; 562():119-126. PubMed ID: 34051575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression and activity of p75NTR are crucial events in azacitidine-induced cell death in prostate cancer.
    Gravina GL; Marampon F; Sanità P; Mancini A; Colapietro A; Scarsella L; Jitariuc A; Biordi L; Ficorella C; Festuccia C
    Oncol Rep; 2016 Jul; 36(1):125-30. PubMed ID: 27222100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β
    Zhang M; Wang Q; Sun X; Yin Q; Chen J; Xu L; Xu C
    Prostate; 2020 Nov; 80(15):1328-1340. PubMed ID: 32894788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-34a Attenuates Paclitaxel Resistance in Prostate Cancer Cells via Direct Suppression of JAG1/Notch1 Axis.
    Liu X; Luo X; Wu Y; Xia D; Chen W; Fang Z; Deng J; Hao Y; Yang X; Zhang T; Zhou L; Wu Y; Wang Q; Xu J; Hu X; Li L
    Cell Physiol Biochem; 2018; 50(1):261-276. PubMed ID: 30282072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA‑15b‑5p exerts its tumor repressive role via targeting GDI2: A novel insight into the pathogenesis of thyroid carcinoma.
    Zou J; Qian J; Fu H; Yin F; Zhao W; Xu L
    Mol Med Rep; 2020 Oct; 22(4):2723-2732. PubMed ID: 32945458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of PER3 reverses paclitaxel resistance of prostate cancer cells by inhibiting the Notch pathway.
    Cai DW; Chen D; Sun SP; Liu ZJ; Liu F; Xian SZ; Wu PS; Kong GQ
    Eur Rev Med Pharmacol Sci; 2018 May; 22(9):2572-2579. PubMed ID: 29771413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of lncRNA CCAT1 enhances sensitivity of paclitaxel in prostate cancer via regulating miR-24-3p and FSCN1.
    Li X; Han X; Wei P; Yang J; Sun J
    Cancer Biol Ther; 2020 May; 21(5):452-462. PubMed ID: 32089062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer.
    Ding M; Jiang CY; Zhang Y; Zhao J; Han BM; Xia SJ
    J Exp Clin Cancer Res; 2020 Feb; 39(1):28. PubMed ID: 32019578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling.
    Wang W; Wang L; Mizokami A; Shi J; Zou C; Dai J; Keller ET; Lu Y; Zhang J
    Chin J Cancer; 2017 Mar; 36(1):35. PubMed ID: 28356132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morin promotes prostate cancer cells chemosensitivity to paclitaxel through miR-155/GATA3 axis.
    Li B; Jin X; Meng H; Hu B; Zhang T; Yu J; Chen S; Guo X; Wang W; Jiang W; Wang J
    Oncotarget; 2017 Jul; 8(29):47849-47860. PubMed ID: 28599307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of p75NTR in a human prostate epithelial tumor cell line reduces nerve growth factor-induced cell growth by activation of programmed cell death.
    Pflug B; Djakiew D
    Mol Carcinog; 1998 Oct; 23(2):106-14. PubMed ID: 9808164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HES6 promotes prostate cancer aggressiveness independently of Notch signalling.
    Carvalho FL; Marchionni L; Gupta A; Kummangal BA; Schaeffer EM; Ross AE; Berman DM
    J Cell Mol Med; 2015 Jul; 19(7):1624-36. PubMed ID: 25864518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD133 suppression increases the sensitivity of prostate cancer cells to paclitaxel.
    Aghajani M; Mokhtarzadeh A; Aghebati-Maleki L; Mansoori B; Mohammadi A; Safaei S; Asadzadeh Z; Hajiasgharzadeh K; Khaze Shahgoli V; Baradaran B
    Mol Biol Rep; 2020 May; 47(5):3691-3703. PubMed ID: 32246247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sox2 is involved in paclitaxel resistance of the prostate cancer cell line PC-3 via the PI3K/Akt pathway.
    Li D; Zhao LN; Zheng XL; Lin P; Lin F; Li Y; Zou HF; Cui RJ; Chen H; Yu XG
    Mol Med Rep; 2014 Dec; 10(6):3169-76. PubMed ID: 25310235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activator of G protein signaling 3 modulates prostate tumor development and progression.
    Adekoya TO; Smith N; Aladeniyi T; Blumer JB; Chen XL; Richardson RM
    Carcinogenesis; 2019 Dec; 40(12):1504-1513. PubMed ID: 31215992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis.
    Xue YN; Yu BB; Liu YN; Guo R; Li JL; Zhang LC; Su J; Sun LK; Li Y
    Prostate; 2019 May; 79(6):647-656. PubMed ID: 30714183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-182 promotes prostate cancer progression through activating Wnt/β-catenin signal pathway.
    Wang D; Lu G; Shao Y; Xu D
    Biomed Pharmacother; 2018 Mar; 99():334-339. PubMed ID: 29353209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway.
    Singh S; Chitkara D; Mehrazin R; Behrman SW; Wake RW; Mahato RI
    PLoS One; 2012; 7(6):e40021. PubMed ID: 22768203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calpain-2 Enhances Non-Small Cell Lung Cancer Progression and Chemoresistance to Paclitaxel via EGFR-pAKT Pathway.
    Xu F; Gu J; Lu C; Mao W; Wang L; Zhu Q; Liu Z; Chu Y; Liu R; Ge D
    Int J Biol Sci; 2019; 15(1):127-137. PubMed ID: 30662353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-regulation of miR-605 promotes the proliferation and invasion of prostate cancer cells by up-regulating EN2.
    Zhou YJ; Yang HQ; Xia W; Cui L; Xu RF; Lu H; Xue Z; Zhang B; Tian ZN; Cao YJ; Xing ZY; Yin S; He XZ
    Life Sci; 2017 Dec; 190():7-14. PubMed ID: 28943214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.