These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34051729)

  • 41. DL-m6A: Identification of N6-Methyladenosine Sites in Mammals Using Deep Learning Based on Different Encoding Schemes.
    Rehman MU; Tayara H; Chong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):904-911. PubMed ID: 35857733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PSI-MOUSE: Predicting Mouse Pseudouridine Sites From Sequence and Genome-Derived Features.
    Song B; Chen K; Tang Y; Ma J; Meng J; Wei Z
    Evol Bioinform Online; 2020; 16():1176934320925752. PubMed ID: 32565674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. M6A-BiNP: predicting N
    Wang M; Xie J; Xu S
    RNA Biol; 2021 Dec; 18(12):2498-2512. PubMed ID: 34161188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BERT2OME: Prediction of 2'-O-Methylation Modifications From RNA Sequence by Transformer Architecture Based on BERT.
    Soylu NN; Sefer E
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2177-2189. PubMed ID: 37819796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. m6AmPred: Identifying RNA N6, 2'-O-dimethyladenosine (m
    Jiang J; Song B; Chen K; Lu Z; Rong R; Zhong Y; Meng J
    Methods; 2022 Jul; 203():328-334. PubMed ID: 33540081
    [TBL] [Abstract][Full Text] [Related]  

  • 46. m5CPred-SVM: a novel method for predicting m5C sites of RNA.
    Chen X; Xiong Y; Liu Y; Chen Y; Bi S; Zhu X
    BMC Bioinformatics; 2020 Oct; 21(1):489. PubMed ID: 33126851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NmSEER V2.0: a prediction tool for 2'-O-methylation sites based on random forest and multi-encoding combination.
    Zhou Y; Cui Q; Zhou Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):690. PubMed ID: 31874624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving N(6)-methyladenosine site prediction with heuristic selection of nucleotide physical-chemical properties.
    Zhang M; Sun JW; Liu Z; Ren MW; Shen HB; Yu DJ
    Anal Biochem; 2016 Sep; 508():104-13. PubMed ID: 27293216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deepm6A-MT: A deep learning-based method for identifying RNA N6-methyladenosine sites in multiple tissues.
    Huang G; Huang X; Jiang J
    Methods; 2024 Jun; 226():1-8. PubMed ID: 38485031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep-2'-O-Me: Predicting 2'-O-methylation sites by Convolutional Neural Networks.
    Mostavi M; Salekin S; Huang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2394-2397. PubMed ID: 30440889
    [TBL] [Abstract][Full Text] [Related]  

  • 51. bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network.
    Islam N; Park J
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 53. WHISTLE server: A high-accuracy genomic coordinate-based machine learning platform for RNA modification prediction.
    Liu L; Song B; Chen K; Zhang Y; de Magalhães JP; Rigden DJ; Lei X; Wei Z
    Methods; 2022 Jul; 203():378-382. PubMed ID: 34245870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. m6AGE: A Predictor for N6-Methyladenosine Sites Identification Utilizing Sequence Characteristics and Graph Embedding-Based Geometrical Information.
    Wang Y; Guo R; Huang L; Yang S; Hu X; He K
    Front Genet; 2021; 12():670852. PubMed ID: 34122525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning.
    Xu H; Jia P; Zhao Z
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32578842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DeepMethylation: a deep learning based framework with GloVe and Transformer encoder for DNA methylation prediction.
    Wang Z; Xiang S; Zhou C; Xu Q
    PeerJ; 2023; 11():e16125. PubMed ID: 37780374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MTDeepM6A-2S: A two-stage multi-task deep learning method for predicting RNA N6-methyladenosine sites of
    Wang H; Zhao S; Cheng Y; Bi S; Zhu X
    Front Microbiol; 2022; 13():999506. PubMed ID: 36274691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Primary sequence-assisted prediction of m
    Zhang Y; Huang D; Wei Z; Chen K
    Methods; 2022 Jul; 203():62-69. PubMed ID: 35429629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. m5U-SVM: identification of RNA 5-methyluridine modification sites based on multi-view features of physicochemical features and distributed representation.
    Ao C; Ye X; Sakurai T; Zou Q; Yu L
    BMC Biol; 2023 Apr; 21(1):93. PubMed ID: 37095510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A miRNA Target Prediction Model Based on Distributed Representation Learning and Deep Learning.
    Sun Y; Xiong F; Sun Y; Zhao Y; Cao Y
    Comput Math Methods Med; 2022; 2022():4490154. PubMed ID: 35924115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.