These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34051997)

  • 1. Mechanical stress induced protein precipitation method for drug target screening.
    Lyu J; Wang Y; Ruan C; Zhang X; Li K; Ye M
    Anal Chim Acta; 2021 Jul; 1168():338612. PubMed ID: 34051997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle-Assisted Precipitation Screening Method for Robust Drug Target Identification.
    Lyu J; Ruan C; Zhang X; Wang Y; Li K; Ye M
    Anal Chem; 2020 Oct; 92(20):13912-13921. PubMed ID: 32933243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins.
    Ruan C; Ning W; Liu Z; Zhang X; Fang Z; Li Y; Dang Y; Xue Y; Ye M
    ACS Chem Biol; 2022 Jan; 17(1):252-262. PubMed ID: 34989232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent advances in protein precipitation-based methods for drug-target screening].
    Liu T; Qin WJ; Yang HJ
    Se Pu; 2024 Jul; 42(7):613-622. PubMed ID: 38966970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-Induced Protein Precipitation for Drug Target Discovery on the Proteomic Scale.
    Zhang X; Wang Q; Li Y; Ruan C; Wang S; Hu L; Ye M
    Anal Chem; 2020 Jan; 92(1):1363-1371. PubMed ID: 31794197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-Wide Deconvolution of Drug Targets and Binding Sites by Lysine Reactivity Profiling.
    Ruan C; Zhou J; Li Z; Li K; Fang Z; Zhang X; Ye M
    Anal Chem; 2022 Feb; 94(7):3352-3359. PubMed ID: 35147412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix Thermal Shift Assay for Fast Construction of Multidimensional Ligand-Target Space.
    Ruan C; Wang Y; Zhang X; Lyu J; Zhang N; Ma Y; Shi C; Qu G; Ye M
    Anal Chem; 2022 May; 94(17):6482-6490. PubMed ID: 35442643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular thermal shift assay for evaluating drug target interactions in cells.
    Jafari R; Almqvist H; Axelsson H; Ignatushchenko M; Lundbäck T; Nordlund P; Martinez Molina D
    Nat Protoc; 2014 Sep; 9(9):2100-22. PubMed ID: 25101824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Introduction of Detergents in Thermal Proteome Profiling Requires Lowering the Applied Temperatures for Efficient Target Protein Identification.
    Ye Y; Li K; Ma Y; Zhang X; Li Y; Yu T; Wang Y; Ye M
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress Tolerance of Antibody-Poly(Amino Acid) Complexes for Improving the Stability of High Concentration Antibody Formulations.
    Izaki S; Kurinomaru T; Handa K; Kimoto T; Shiraki K
    J Pharm Sci; 2015 Aug; 104(8):2457-63. PubMed ID: 26036204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a high-throughput screening method for the detection of the excipient-mediated precipitation inhibition of poorly soluble drugs.
    Petruševska M; Urleb U; Peternel L
    Assay Drug Dev Technol; 2013 Mar; 11(2):117-29. PubMed ID: 23116459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes.
    Mateus A; Määttä TA; Savitski MM
    Proteome Sci; 2016; 15():13. PubMed ID: 28652855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Protein Solubility Shift Assays for Comprehensive Drug Target Identification on a Proteome-Wide Scale.
    Zhang X; Ruan C; Wang Y; Wang K; Liu X; Lyu J; Ye M
    Anal Chem; 2023 Sep; 95(37):13779-13787. PubMed ID: 37676971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precipitation of a poorly soluble model drug during in vitro lipolysis: characterization and dissolution of the precipitate.
    Sassene PJ; Knopp MM; Hesselkilde JZ; Koradia V; Larsen A; Rades T; Müllertz A
    J Pharm Sci; 2010 Dec; 99(12):4982-91. PubMed ID: 20574997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Identification techniques of small molecule drug target proteins without chemical modification and its applications: a review].
    Ma J; Liu Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1131-1138. PubMed ID: 33973430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A breakthrough novel method to resolve the drug and target interference problem in immunogenicity assays.
    Zoghbi J; Xu Y; Grabert R; Theobald V; Richards S
    J Immunol Methods; 2015 Nov; 426():62-9. PubMed ID: 26255760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations - a PEARRL review.
    Price DJ; Ditzinger F; Koehl NJ; Jankovic S; Tsakiridou G; Nair A; Holm R; Kuentz M; Dressman JB; Saal C
    J Pharm Pharmacol; 2019 Apr; 71(4):483-509. PubMed ID: 29770440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of drug precipitation of solubility-enhancing liquid formulations using milligram quantities of a new molecular entity (NME).
    Dai WG; Dong LC; Shi X; Nguyen J; Evans J; Xu Y; Creasey AA
    J Pharm Sci; 2007 Nov; 96(11):2957-69. PubMed ID: 17705287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of presence of excipients in drug analysis in fed-state gastric biorelevant media.
    Baxevanis F; Kuiper J; Fotaki N
    Eur J Pharm Biopharm; 2018 Oct; 131():178-188. PubMed ID: 30110669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug precipitation inhibitors in supersaturable formulations.
    Xu S; Dai WG
    Int J Pharm; 2013 Aug; 453(1):36-43. PubMed ID: 23680727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.