BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34052001)

  • 1. Chemical proteomic profiling of UTP-binding proteins in human cells.
    Liu Y; Qu M; Pan M; Zheng X; Sheng Y; Ji Y; You C; Dai X
    Anal Chim Acta; 2021 Jul; 1168():338607. PubMed ID: 34052001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoproteomic Profiling of Geranyl Pyrophosphate-Binding Proteins.
    Cai R; Wang Y
    Methods Mol Biol; 2023; 2603():127-138. PubMed ID: 36370275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Proteomic Profiling of the Interacting Proteins of Isoprenoid Pyrophosphates.
    Cai R; Dong X; Yu K; He X; Liu X; Wang Y
    Anal Chem; 2020 Jun; 92(12):8031-8036. PubMed ID: 32420730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope-coded ATP probe for quantitative affinity profiling of ATP-binding proteins.
    Xiao Y; Guo L; Wang Y
    Anal Chem; 2013 Aug; 85(15):7478-86. PubMed ID: 23841533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SILAC-IodoTMT for Assessment of the Cellular Proteome and Its Redox Status.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Hodny Z
    Methods Mol Biol; 2023; 2603():259-268. PubMed ID: 36370286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Factors Produced and Secreted by Mesenchymal Stromal Cells with the SILAC Method.
    Rocha B; Calamia V; Blanco FJ; Ruiz-Romero C
    Methods Mol Biol; 2016; 1416():551-65. PubMed ID: 27236695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression clustering reveals detailed co-expression patterns of functionally related proteins during B cell differentiation: a proteomic study using a combination of one-dimensional gel electrophoresis, LC-MS/MS, and stable isotope labeling by amino acids in cell culture (SILAC).
    Romijn EP; Christis C; Wieffer M; Gouw JW; Fullaondo A; van der Sluijs P; Braakman I; Heck AJ
    Mol Cell Proteomics; 2005 Sep; 4(9):1297-310. PubMed ID: 15961381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of the Ubiquitinome in Cells Undergoing Oncogene-Induced Senescence.
    Zhu H; Le L; Tang HY; Speicher DW; Zhang R
    Methods Mol Biol; 2017; 1534():127-137. PubMed ID: 27812874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes.
    Xiao Y; Guo L; Jiang X; Wang Y
    Anal Chem; 2013 Mar; 85(6):3198-206. PubMed ID: 23413923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide quantitation by SILAC.
    Rigbolt KT; Blagoev B
    Methods Mol Biol; 2010; 658():187-204. PubMed ID: 20839105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Proteomic Profiling of Lysophosphatidic Acid-Binding Proteins.
    Dong X; Gao L; Song J; Wang Y
    Anal Chem; 2019 Dec; 91(24):15365-15369. PubMed ID: 31765128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.
    Adachi J; Kishida M; Watanabe S; Hashimoto Y; Fukamizu K; Tomonaga T
    J Proteome Res; 2014 Dec; 13(12):5461-70. PubMed ID: 25230287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.
    Reinders Y; Völler D; Bosserhoff AK; Oefner PJ; Reinders J
    Methods Mol Biol; 2016; 1394():101-108. PubMed ID: 26700044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Profiling of the Endoplasmic Reticulum Proteome Using Designer Labeling Reagents.
    Fujisawa A; Tamura T; Yasueda Y; Kuwata K; Hamachi I
    J Am Chem Soc; 2018 Dec; 140(49):17060-17070. PubMed ID: 30433779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomics using SILAC: Principles, applications, and developments.
    Chen X; Wei S; Ji Y; Guo X; Yang F
    Proteomics; 2015 Sep; 15(18):3175-92. PubMed ID: 26097186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-Infected Primary Renal Proximal Tubule Epithelial Cells.
    Justice JL; Verhalen B; Kumar R; Lefkowitz EJ; Imperiale MJ; Jiang M
    J Proteome Res; 2015 Oct; 14(10):4413-24. PubMed ID: 26354146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking stable isotope labeling based quantitative proteomics.
    Altelaar AF; Frese CK; Preisinger C; Hennrich ML; Schram AW; Timmers HT; Heck AJ; Mohammed S
    J Proteomics; 2013 Aug; 88():14-26. PubMed ID: 23085607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SILAC yeast: from labeling to comprehensive proteome quantification.
    de Godoy LM
    Methods Mol Biol; 2014; 1156():81-109. PubMed ID: 24791983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.