These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 34052430)
1. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions. Villamizar-Sarmiento MG; Guerrero J; Moreno-Villoslada I; Oyarzun-Ampuero FA Eur J Pharm Biopharm; 2021 Sep; 166():19-29. PubMed ID: 34052430 [TBL] [Abstract][Full Text] [Related]
2. A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading. Villamizar-Sarmiento MG; Molina-Soto EF; Guerrero J; Shibue T; Nishide H; Moreno-Villoslada I; Oyarzun-Ampuero FA Mol Pharm; 2019 Jul; 16(7):2892-2901. PubMed ID: 31181908 [TBL] [Abstract][Full Text] [Related]
3. Synergy between polymer crystallinity and nanoparticles size for payloads release. Niyom Y; Phakkeeree T; Flood A; Crespy D J Colloid Interface Sci; 2019 Aug; 550():139-146. PubMed ID: 31063872 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Umerska A; Corrigan OI; Tajber L Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822 [TBL] [Abstract][Full Text] [Related]
5. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery. Rani R; Dilbaghi N; Dhingra D; Kumar S Int J Biol Macromol; 2015; 78():173-9. PubMed ID: 25881957 [TBL] [Abstract][Full Text] [Related]
6. Development of aqueous ternary nanomatrix films: A novel 'green' strategy for the delivery of poorly soluble drugs. Kola-Mustapha AT; Armitage D; Abioye AO Int J Pharm; 2016 Dec; 515(1-2):616-631. PubMed ID: 27825861 [TBL] [Abstract][Full Text] [Related]
7. pH-sensitive micelles self-assembled from polymer brush (PAE- Huang X; Liao W; Zhang G; Kang S; Zhang CY Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738 [TBL] [Abstract][Full Text] [Related]
8. Development of a solid supersaturated self-nanoemulsifying preconcentrate (S-superSNEP) of fenofibrate using dimethylacetamide and a novel co-processed excipient. Patki M; Patel K Drug Dev Ind Pharm; 2019 Mar; 45(3):405-414. PubMed ID: 30444435 [TBL] [Abstract][Full Text] [Related]
9. Terbinafine-loaded branched PLGA-based cationic nanoparticles with modifiable properties. Martiska J; Snejdrova E; Drastik M; Matysova L; Dittrich M; Loskot J; Jilek P Pharm Dev Technol; 2019 Dec; 24(10):1308-1316. PubMed ID: 31509046 [TBL] [Abstract][Full Text] [Related]
10. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Yong HW; Kakkar A Macromol Biosci; 2021 Aug; 21(8):e2100105. PubMed ID: 34117840 [TBL] [Abstract][Full Text] [Related]
11. Encapsulation and Controlled Release of a Camptothecin Prodrug from Nanocarriers and Microgels: Tuning Release Rate with Nanocarrier Excipient Composition. Wilson BK; Sinko PJ; Prud'homme RK Mol Pharm; 2021 Mar; 18(3):1093-1101. PubMed ID: 33440941 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy. Alemrayat B; Elhissi A; Younes HM Pharm Dev Technol; 2019 Feb; 24(2):235-242. PubMed ID: 29561210 [TBL] [Abstract][Full Text] [Related]
13. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
14. Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Wang B; Jiang W; Yan H; Zhang X; Yang L; Deng L; Singh GK; Pan J Int J Nanomedicine; 2011; 6():1443-51. PubMed ID: 21796246 [TBL] [Abstract][Full Text] [Related]
15. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design. Vuddanda PR; Mishra A; Singh SK; Singh S Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. Gjuroski I; Girousi E; Meyer C; Hertig D; Stojkov D; Fux M; Schnidrig N; Bucher J; Pfister S; Sauser L; Simon HU; Vermathen P; Furrer J; Vermathen M J Control Release; 2019 Dec; 316():150-167. PubMed ID: 31689463 [TBL] [Abstract][Full Text] [Related]
17. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Gordillo-Galeano A; Mora-Huertas CE Eur J Pharm Biopharm; 2018 Dec; 133():285-308. PubMed ID: 30463794 [TBL] [Abstract][Full Text] [Related]
18. HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Rani S; Gothwal A; Pandey PK; Chauhan DS; Pachouri PK; Gupta UD; Gupta U Pharm Res; 2018 Dec; 36(1):19. PubMed ID: 30511238 [TBL] [Abstract][Full Text] [Related]
19. Production of dry-state ketoprofen-encapsulated PMMA NPs by coupling micromixer-assisted nanoprecipitation and spray drying. Ding S; Serra CA; Anton N; Yu W; Vandamme TF Int J Pharm; 2019 Mar; 558():1-8. PubMed ID: 30586630 [TBL] [Abstract][Full Text] [Related]
20. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. Abouelmagd SA; Ku YJ; Yeo Y J Drug Target; 2015; 23(7-8):725-35. PubMed ID: 26453168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]