These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 34052577)
1. Resolution of mitochondrial DNA mixtures using a probe capture next generation sequencing system and phylogenetic-based software. Wisner M; Erlich H; Shih S; Calloway C Forensic Sci Int Genet; 2021 Jul; 53():102531. PubMed ID: 34052577 [TBL] [Abstract][Full Text] [Related]
2. A New Tool for Probabilistic Assessment of MPS Data Associated with mtDNA Mixtures. McElhoe JA; Addesso A; Young B; Holland MM Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397184 [TBL] [Abstract][Full Text] [Related]
3. A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures. Vohr SH; Gordon R; Eizenga JM; Erlich HA; Calloway CD; Green RE Forensic Sci Int Genet; 2017 Sep; 30():93-105. PubMed ID: 28667863 [TBL] [Abstract][Full Text] [Related]
4. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Kim H; Erlich HA; Calloway CD Croat Med J; 2015 Jun; 56(3):208-17. PubMed ID: 26088845 [TBL] [Abstract][Full Text] [Related]
5. Applications of Probe Capture Enrichment Next Generation Sequencing for Whole Mitochondrial Genome and 426 Nuclear SNPs for Forensically Challenging Samples. Shih SY; Bose N; Gonçalves ABR; Erlich HA; Calloway CD Genes (Basel); 2018 Jan; 9(1):. PubMed ID: 29361782 [TBL] [Abstract][Full Text] [Related]
6. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples. Bose N; Carlberg K; Sensabaugh G; Erlich H; Calloway C Forensic Sci Int Genet; 2018 May; 34():186-196. PubMed ID: 29524767 [TBL] [Abstract][Full Text] [Related]
7. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Churchill JD; Stoljarova M; King JL; Budowle B Int J Legal Med; 2018 Sep; 132(5):1263-1272. PubMed ID: 29468381 [TBL] [Abstract][Full Text] [Related]
8. Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software. Holt CL; Stephens KM; Walichiewicz P; Fleming KD; Forouzmand E; Wu SF Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33921728 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of a mitogenome capture and Illumina sequencing protocol using non-probative, case-type skeletal samples: Implications for the use of a positive control in a next-generation sequencing procedure. Marshall C; Sturk-Andreaggi K; Daniels-Higginbotham J; Oliver RS; Barritt-Ross S; McMahon TP Forensic Sci Int Genet; 2017 Nov; 31():198-206. PubMed ID: 29101892 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial DNA control region typing from highly degraded skeletal remains by single-multiplex next-generation sequencing. Vinueza-Espinosa DC; Cuesta-Aguirre DR; Malgosa A; Santos C Electrophoresis; 2023 Sep; 44(17-18):1423-1434. PubMed ID: 37379235 [TBL] [Abstract][Full Text] [Related]
11. A 1204-single nucleotide polymorphism and insertion-deletion polymorphism panel for massively parallel sequencing analysis of DNA mixtures. Hwa HL; Chung WC; Chen PL; Lin CP; Li HY; Yin HI; Lee JC Forensic Sci Int Genet; 2018 Jan; 32():94-101. PubMed ID: 29128546 [TBL] [Abstract][Full Text] [Related]
12. Assessment of mitochondrial DNA heteroplasmy detected on commercial panel using MPS system with artificial mixture samples. Cho S; Kim MY; Lee JH; Lee SD Int J Legal Med; 2018 Jul; 132(4):1049-1056. PubMed ID: 29279961 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Parson W; Strobl C; Huber G; Zimmermann B; Gomes SM; Souto L; Fendt L; Delport R; Langit R; Wootton S; Lagacé R; Irwin J Forensic Sci Int Genet; 2013 Sep; 7(5):543-9. PubMed ID: 23948325 [TBL] [Abstract][Full Text] [Related]
14. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. McElhoe JA; Holland MM; Makova KD; Su MS; Paul IM; Baker CH; Faith SA; Young B Forensic Sci Int Genet; 2014 Nov; 13():20-9. PubMed ID: 25051226 [TBL] [Abstract][Full Text] [Related]
15. A Novel Next-Generation Sequencing-Based Approach for Concurrent Detection of Mitochondrial DNA Copy Number and Mutation. Zhou K; Mo Q; Guo S; Liu Y; Yin C; Ji X; Guo X; Xing J J Mol Diagn; 2020 Dec; 22(12):1408-1418. PubMed ID: 33011442 [TBL] [Abstract][Full Text] [Related]
16. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data. Sturk-Andreaggi K; Peck MA; Boysen C; Dekker P; McMahon TP; Marshall CK Forensic Sci Int Genet; 2017 Nov; 31():189-197. PubMed ID: 29080494 [TBL] [Abstract][Full Text] [Related]
17. MMDIT: A tool for the deconvolution and interpretation of mitochondrial DNA mixtures. Mandape SN; Smart U; King JL; Muenzler M; Kapema KB; Budowle B; Woerner AE Forensic Sci Int Genet; 2021 Nov; 55():102568. PubMed ID: 34416654 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of GeneMarker Holland MM; Pack ED; McElhoe JA Forensic Sci Int Genet; 2017 May; 28():90-98. PubMed ID: 28193506 [TBL] [Abstract][Full Text] [Related]
19. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures. Chan Mun Wei J; Zhao Z; Li SC; Ng YK Comput Biol Chem; 2018 Jun; 74():428-433. PubMed ID: 29625871 [TBL] [Abstract][Full Text] [Related]
20. Massively parallel sequencing of the entire control region and targeted coding region SNPs of degraded mtDNA using a simplified library preparation method. Lee EY; Lee HY; Oh SY; Jung SE; Yang IS; Lee YH; Yang WI; Shin KJ Forensic Sci Int Genet; 2016 May; 22():37-43. PubMed ID: 26844917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]