BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34052610)

  • 1. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates.
    Chong JWR; Yew GY; Khoo KS; Ho SH; Show PL
    J Environ Manage; 2021 Sep; 293():112782. PubMed ID: 34052610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review.
    Chong JWR; Khoo KS; Yew GY; Leong WH; Lim JW; Lam MK; Ho YC; Ng HS; Munawaroh HSH; Show PL
    Bioresour Technol; 2021 Dec; 342():125947. PubMed ID: 34563823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae.
    Costa SS; Miranda AL; Andrade BB; Assis DJ; Souza CO; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2018 Sep; 116():552-562. PubMed ID: 29763703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the economy of heterotrophic microalgae- and insect-based food waste utilization processes.
    Pleissner D; Smetana S
    Waste Manag; 2020 Feb; 102():198-203. PubMed ID: 31678806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation.
    López-Pacheco IY; Rodas-Zuluaga LI; Cuellar-Bermudez SP; Hidalgo-Vázquez E; Molina-Vazquez A; Araújo RG; Martínez-Ruiz M; Varjani S; Barceló D; Iqbal HMN; Parra-Saldívar R
    Mar Drugs; 2022 Sep; 20(10):. PubMed ID: 36286425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris.
    Chew KW; Chia SR; Show PL; Ling TC; Arya SS; Chang JS
    Bioresour Technol; 2018 Nov; 267():356-362. PubMed ID: 30029182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorising nutrient-rich digestate: Dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation.
    Fernandes F; Silkina A; Fuentes-Grünewald C; Wood EE; Ndovela VLS; Oatley-Radcliffe DL; Lovitt RW; Llewellyn CA
    Waste Manag; 2020 Dec; 118():197-208. PubMed ID: 32892096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater.
    Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM
    Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivation of microalgae on food waste: Recent advances and way forward.
    Kumar Y; Kaur S; Kheto A; Munshi M; Sarkar A; Om Pandey H; Tarafdar A; Sindhu R; Sirohi R
    Bioresour Technol; 2022 Nov; 363():127834. PubMed ID: 36029984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate.
    Wang X; Zhang MM; Sun Z; Liu SF; Qin ZH; Mou JH; Zhou ZG; Lin CSK
    J Hazard Mater; 2020 Dec; 400():123258. PubMed ID: 32947693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taguchi approach for assessing supercritical CO
    Abdul Rahman SNS; Chai YH; Lam MK
    J Environ Manage; 2024 Mar; 355():120447. PubMed ID: 38460326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Liquid Waste from Biogas Production for Microalgae
    Sendzikiene E; Makareviciene V
    Cells; 2022 Apr; 11(7):. PubMed ID: 35406770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas.
    Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F
    Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and process engineering for polyhydroxyalkanoate production from pre- and post-consumer food waste.
    Chacón M; Wongsirichot P; Winterburn J; Dixon N
    Curr Opin Biotechnol; 2024 Feb; 85():103024. PubMed ID: 38056203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food waste bioconversion into new food: A mini-review on nutrients circularity in the production of mushrooms, microalgae and insects.
    Girotto F; Piazza L
    Waste Manag Res; 2022 Jan; 40(1):47-53. PubMed ID: 34348508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling wastewater valorization with sustainable biofuel production: Comparison of lab- and pilot-scale biomass yields of Chlorella sorokiniana grown in wastewater under photoautotrophic and mixotrophic conditions.
    Qurat-Ul-Ain ; Javid A; Ali S; Hasan A; Senthilkumar N; Ranjitha J; Hussain A
    Chemosphere; 2022 Aug; 301():134703. PubMed ID: 35483657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.