These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34052721)

  • 1. Precise micro-particle and bubble manipulation by tunable ultrasonic bottle beams.
    Zhou Q; Li M; Fu C; Ren X; Xu Z; Liu X
    Ultrason Sonochem; 2021 Jul; 75():105602. PubMed ID: 34052721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic generation and modulation of acoustic bottle-beams by metasurfaces.
    Chen DC; Zhu XF; Wei Q; Wu DJ; Liu XJ
    Sci Rep; 2018 Aug; 8(1):12682. PubMed ID: 30139974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between particles and bubbles driven by ultrasound: Acoustic radiation force on an elastic particle immersed in the ideal fluid near a bubble.
    Feng K; Wang C; Mo R; Hu J; Li S
    Ultrason Sonochem; 2020 Oct; 67():105166. PubMed ID: 32454445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced standing-wave acoustic levitation using high-order transverse modes in phased array ultrasonic cavities.
    Contreras V; Volke-Sepúlveda K
    Ultrasonics; 2024 Mar; 138():107230. PubMed ID: 38176289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.
    Liu B; Tian B; Yang X; Li M; Yang J; Li D; Oh KW
    Biomicrofluidics; 2018 May; 12(3):034111. PubMed ID: 29937951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances.
    Wang S; Wang X; You F; Xiao H
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromotor Manipulation Using Ultrasonic Active Traveling Waves.
    Cao HX; Jung D; Lee HS; Go G; Nan M; Choi E; Kim CS; Park JO; Kang B
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33668512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle Manipulation in 2D Space Using a Capacitive Micromachined Ultrasonic Transducer.
    Lee CH; Park BH; Kim YH; Jo HG; Park KK
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic trapping of particles using a Chinese taiji lens.
    Zhou Q; Zhang J; Ren X; Xu Z; Liu X
    Ultrasonics; 2021 Feb; 110():106262. PubMed ID: 33049475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic acoustic elements for manipulation of levitated objects.
    Marzo A; Seah SA; Drinkwater BW; Sahoo DR; Long B; Subramanian S
    Nat Commun; 2015 Oct; 6():8661. PubMed ID: 26505138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
    Ochiai Y; Hoshi T; Rekimoto J
    PLoS One; 2014; 9(5):e97590. PubMed ID: 24849371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force.
    Erpelding TN; Hollman KW; O'Donnell M
    Exp Eye Res; 2007 Feb; 84(2):332-41. PubMed ID: 17141220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field.
    Wu H; Zheng H; Li Y; Ohl CD; Yu H; Li D
    Ultrason Sonochem; 2021 Oct; 78():105735. PubMed ID: 34479075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory and experiment on particle trapping and manipulation via optothermally generated bubbles.
    Zhao C; Xie Y; Mao Z; Zhao Y; Rufo J; Yang S; Guo F; Mai JD; Huang TJ
    Lab Chip; 2014 Jan; 14(2):384-91. PubMed ID: 24276624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution.
    Zhang W; Song B; Bai X; Jia L; Song L; Guo J; Feng L
    Lab Chip; 2021 Dec; 21(24):4760-4771. PubMed ID: 34632476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bubble oscillations at low frequency ultrasound for biological applications.
    Mondal J; Wu Y; Mishra A; Akbaridoust F; Marusic I; Ghosh P; Ashokkumar M
    Ultrason Sonochem; 2024 Mar; 104():106816. PubMed ID: 38433032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves.
    Chen Y; Ni C; Xie G; Liu Q
    Ultrason Sonochem; 2020 Jun; 64():105003. PubMed ID: 32062535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.