BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34052893)

  • 1. Efficiency of arsenic remediation from growth medium through Bacillus licheniformis modulated by phosphate (PO
    Tripti K; Shardendu S
    Arch Microbiol; 2021 Sep; 203(7):4081-4089. PubMed ID: 34052893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH modulates arsenic toxicity in Bacillus licheniformis DAS-2.
    Tripti K; Shardendu
    Ecotoxicol Environ Saf; 2016 Aug; 130():240-7. PubMed ID: 27135959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO
    Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C
    Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of NO3 (-) and PO4 (3-) on the release of geogenic arsenic and antimony in agricultural wetland soil: a field and laboratory approach.
    Rouwane A; Rabiet M; Grybos M; Bernard G; Guibaud G
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4714-28. PubMed ID: 26531710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of arsenic-metabolizing bacteria in an alkaline soil.
    Zhang M; Lu G; Xiao T; Xiao E; Sun X; Yan W; Liu G; Wang Q; Yan G; Liu H; Sun W
    Environ Pollut; 2022 Nov; 312():120040. PubMed ID: 36030950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of plant growth promoting attributes and arsenic remediation efficacy of bacteria isolated from agricultural soils of Chhattisgarh.
    Pandey N; Manjunath K; Sahu K
    Arch Microbiol; 2020 Apr; 202(3):567-578. PubMed ID: 31741012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.
    Tiwari S; Sarangi BK; Thul ST
    J Environ Manage; 2016 Sep; 180():359-65. PubMed ID: 27257820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes.
    Wang Y; Zhang C; Zheng Y; Ge Y
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21213-21221. PubMed ID: 28733823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum).
    Levy JL; Stauber JL; Adams MS; Maher WA; Kirby JK; Jolley DF
    Environ Toxicol Chem; 2005 Oct; 24(10):2630-9. PubMed ID: 16268166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An indigenous bacterium Bacillus XZM for phosphate enhanced transformation and migration of arsenate.
    Wang J; Xie Z; Wei X; Chen M; Luo Y; Wang Y
    Sci Total Environ; 2020 Jun; 719():137183. PubMed ID: 32120093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of ocean acidification on growth, phosphate and nitrate uptake of macroalgae].
    Yu J; Zhang Y; Yang GP; Tian YW
    Huan Jing Ke Xue; 2012 Oct; 33(10):3352-60. PubMed ID: 23233959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenite Oxidation by Dunaliella salina is Affected by External Phosphate Concentration.
    Wang Y; Zhang C; Yu X; Ge Y
    Bull Environ Contam Toxicol; 2020 Dec; 105(6):868-873. PubMed ID: 33211134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.
    Niazi NK; Burton ED
    Environ Pollut; 2016 Nov; 218():111-117. PubMed ID: 27552044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil.
    Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M
    J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification.
    Li R; Guan M; Wang W
    Water Res; 2021 Feb; 189():116662. PubMed ID: 33271414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.