These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34053042)

  • 1. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity.
    Kaur I; Behl T; Sehgal A; Singh S; Sharma N; Aleya L; Bungau S
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):37060-37081. PubMed ID: 34053042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging concepts of mitochondrial dysfunction in Parkinson's disease progression: Pathogenic and therapeutic implications.
    Rani L; Mondal AC
    Mitochondrion; 2020 Jan; 50():25-34. PubMed ID: 31654753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial dysfunction and oxidative stress in Parkinson's disease.
    Subramaniam SR; Chesselet MF
    Prog Neurobiol; 2013; 106-107():17-32. PubMed ID: 23643800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple herbal extract DA-9805 exerts a neuroprotective effect via amelioration of mitochondrial damage in experimental models of Parkinson's disease.
    Jeong JS; Piao Y; Kang S; Son M; Kang YC; Du XF; Ryu J; Cho YW; Jiang HH; Oh MS; Hong SP; Oh YJ; Pak YK
    Sci Rep; 2018 Oct; 8(1):15953. PubMed ID: 30374025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease.
    Sohrabi T; Mirzaei-Behbahani B; Zadali R; Pirhaghi M; Morozova-Roche LA; Meratan AA
    J Mol Biol; 2023 Jun; 435(12):167992. PubMed ID: 36736886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies.
    Moradi Vastegani S; Nasrolahi A; Ghaderi S; Belali R; Rashno M; Farzaneh M; Khoshnam SE
    Neurochem Res; 2023 Aug; 48(8):2285-2308. PubMed ID: 36943668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fighting Parkinson's disease: The return of the mitochondria.
    Zambrano K; Barba D; Castillo K; Noboa L; Argueta-Zamora D; Robayo P; Arizaga E; Caicedo A; Gavilanes AWD
    Mitochondrion; 2022 May; 64():34-44. PubMed ID: 35218960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson's disease.
    Kaur S; Sehrawat A; Mastana SS; Kandimalla R; Sharma PK; Bhatti GK; Bhatti JS
    Life Sci; 2023 Oct; 330():121995. PubMed ID: 37541578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhou Y; Liu Y; Kang Z; Yao H; Song N; Wang M; Song C; Zhang K; Ding J; Tang J; Hu G; Lu M
    Autophagy; 2023 Sep; 19(9):2520-2537. PubMed ID: 37014258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial control of cell bioenergetics in Parkinson's disease.
    Requejo-Aguilar R; Bolaños JP
    Free Radic Biol Med; 2016 Nov; 100():123-137. PubMed ID: 27091692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease.
    Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in
    Martinez BA; Petersen DA; Gaeta AL; Stanley SP; Caldwell GA; Caldwell KA
    J Neurosci; 2017 Nov; 37(46):11085-11100. PubMed ID: 29030433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.