These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34054422)

  • 1. Multi-Source Co-adaptation for EEG-Based Emotion Recognition by Mining Correlation Information.
    Tao J; Dan Y
    Front Neurosci; 2021; 15():677106. PubMed ID: 34054422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition.
    Tao J; Dan Y; Zhou D; He S
    Front Neurosci; 2022; 16():850906. PubMed ID: 35573289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local domain generalization with low-rank constraint for EEG-based emotion recognition.
    Tao J; Dan Y; Zhou D
    Front Neurosci; 2023; 17():1213099. PubMed ID: 38027525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-subject EEG emotion recognition using multi-source domain manifold feature selection.
    She Q; Shi X; Fang F; Ma Y; Zhang Y
    Comput Biol Med; 2023 Jun; 159():106860. PubMed ID: 37080005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition.
    Wang J; Ning X; Xu W; Li Y; Jia Z; Lin Y
    Neural Netw; 2024 Dec; 180():106742. PubMed ID: 39342695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilistic distribution distance metric: a robust domain adaptation learning method.
    Tao J; Dan Y; Zhou D
    Front Neurosci; 2023; 17():1247082. PubMed ID: 38027506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring EEG Features in Cross-Subject Emotion Recognition.
    Li X; Song D; Zhang P; Zhang Y; Hou Y; Hu B
    Front Neurosci; 2018; 12():162. PubMed ID: 29615853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features.
    Yang F; Zhao X; Jiang W; Gao P; Liu G
    Front Comput Neurosci; 2019; 13():53. PubMed ID: 31507396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition.
    Chai X; Wang Q; Zhao Y; Li Y; Liu D; Liu X; Bai O
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography.
    Liang S; Su L; Fu Y; Wu L
    Front Hum Neurosci; 2022; 16():921346. PubMed ID: 36188181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing cross-subject EEG emotion recognition through multi-source manifold metric transfer learning.
    Shi X; She Q; Fang F; Meng M; Tan T; Zhang Y
    Comput Biol Med; 2024 May; 174():108445. PubMed ID: 38603901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MS-FRAN: A Novel Multi-Source Domain Adaptation Method for EEG-Based Emotion Recognition.
    Li W; Huan W; Shao S; Hou B; Song A
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5302-5313. PubMed ID: 37665703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MS-MDA: Multisource Marginal Distribution Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition.
    Chen H; Jin M; Li Z; Fan C; Li J; He H
    Front Neurosci; 2021; 15():778488. PubMed ID: 34949983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid transfer learning strategy for cross-subject EEG emotion recognition.
    Lu W; Liu H; Ma H; Tan TP; Xia L
    Front Hum Neurosci; 2023; 17():1280241. PubMed ID: 38034069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition.
    Cao J; He X; Yang C; Chen S; Li Z; Wang Z
    Front Psychol; 2021; 12():809459. PubMed ID: 35095696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MES-CTNet: A Novel Capsule Transformer Network Base on a Multi-Domain Feature Map for Electroencephalogram-Based Emotion Recognition.
    Du Y; Ding H; Wu M; Chen F; Cai Z
    Brain Sci; 2024 Mar; 14(4):. PubMed ID: 38671995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning.
    Li J; Hua H; Xu Z; Shu L; Xu X; Kuang F; Wu S
    Comput Biol Med; 2022 Jun; 145():105519. PubMed ID: 35585734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification.
    Ni T; Ni Y; Xue J; Wang S
    Front Psychol; 2021; 12():721266. PubMed ID: 34393958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition.
    Zhang R; Guo H; Xu Z; Hu Y; Chen M; Zhang L
    Brain Res Bull; 2024 Mar; 208():110901. PubMed ID: 38355058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.