These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 34054452)

  • 1. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grounding language in action and perception: from cognitive agents to humanoid robots.
    Cangelosi A
    Phys Life Rev; 2010 Jun; 7(2):139-51. PubMed ID: 20416855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using spoken words to guide open-ended category formation.
    Chauhan A; Seabra Lopes L
    Cogn Process; 2011 Nov; 12(4):341-54. PubMed ID: 21614526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Language bootstrapping: learning word meanings from perception-action association.
    Salvi G; Montesano L; Bernardino A; Santos-Victor J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):660-71. PubMed ID: 22106152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grounding Action Words in the Sensorimotor Interaction with the World: Experiments with a Simulated iCub Humanoid Robot.
    Marocco D; Cangelosi A; Fischer K; Belpaeme T
    Front Neurorobot; 2010; 4():. PubMed ID: 20725503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossmodal Language Grounding in an Embodied Neurocognitive Model.
    Heinrich S; Yao Y; Hinz T; Liu Z; Hummel T; Kerzel M; Weber C; Wermter S
    Front Neurorobot; 2020; 14():52. PubMed ID: 33154720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot.
    Fischer T; Puigbò JY; Camilleri D; Nguyen PDH; Moulin-Frier C; Lallée S; Metta G; Prescott TJ; Demiris Y; Verschure PFMJ
    Front Robot AI; 2018; 5():22. PubMed ID: 33500909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Are There Developmental Stages in Language Learning? A Developmental Robotics Model of Language Development.
    Morse AF; Cangelosi A
    Cogn Sci; 2017 Feb; 41 Suppl 1():32-51. PubMed ID: 27680660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental word acquisition and grammar learning by humanoid robots through a self-organizing incremental neural network.
    He X; Ogura T; Satou A; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1357-72. PubMed ID: 17926715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive and incremental learning of spatial object relations from human demonstrations.
    Kartmann R; Asfour T
    Front Robot AI; 2023; 10():1151303. PubMed ID: 37275214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.
    Hinaut X; Petit M; Pointeau G; Dominey PF
    Front Neurorobot; 2014; 8():16. PubMed ID: 24834050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Cognitive Architecture for Robot Learning of Action and Language.
    Miyazawa K; Horii T; Aoki T; Nagai T
    Front Robot AI; 2019; 6():131. PubMed ID: 33501146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of abstract concept learning in embodied agents and robots.
    Cangelosi A; Stramandinoli F
    Philos Trans R Soc Lond B Biol Sci; 2018 Aug; 373(1752):. PubMed ID: 29914999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making fingers and words count in a cognitive robot.
    De La Cruz VM; Di Nuovo A; Di Nuovo S; Cangelosi A
    Front Behav Neurosci; 2014; 8():13. PubMed ID: 24550795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grounding the Meanings in Sensorimotor Behavior using Reinforcement Learning.
    Farkaš I; Malík T; Rebrová K
    Front Neurorobot; 2012; 6():1. PubMed ID: 22393319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions.
    Yamada T; Murata S; Arie H; Ogata T
    Front Neurorobot; 2017; 11():70. PubMed ID: 29311891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking language with embodied and teleological representations of action for humanoid cognition.
    Lallee S; Madden C; Hoen M; Dominey PF
    Front Neurorobot; 2010; 4():8. PubMed ID: 20577629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-development of manner and path concepts in language, action, and eye-gaze behavior.
    Lohan KS; Griffiths SS; Sciutti A; Partmann TC; Rohlfing KJ
    Top Cogn Sci; 2014 Jul; 6(3):492-512. PubMed ID: 24934106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.