These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 34054842)
1. A Thioester-Containing Protein Controls Dengue Virus Infection in Weng SC; Li HH; Li JC; Liu WL; Chen CH; Shiao SH Front Immunol; 2021; 12():670122. PubMed ID: 34054842 [TBL] [Abstract][Full Text] [Related]
2. Blood glucose promotes dengue virus infection in the mosquito Aedes aegypti. Weng SC; Tsao PN; Shiao SH Parasit Vectors; 2021 Jul; 14(1):376. PubMed ID: 34311776 [TBL] [Abstract][Full Text] [Related]
3. Transgenic refractory Aedes aegypti lines are resistant to multiple serotypes of dengue virus. Liu WL; Hsu CW; Chan SP; Yen PS; Su MP; Li JC; Li HH; Cheng L; Tang CK; Ko SH; Tsai HK; Tsai ZT; Akbari OS; Failloux AB; Chen CH Sci Rep; 2021 Dec; 11(1):23865. PubMed ID: 34903766 [TBL] [Abstract][Full Text] [Related]
4. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. Behura SK; Gomez-Machorro C; Harker BW; deBruyn B; Lovin DD; Hemme RR; Mori A; Romero-Severson J; Severson DW PLoS Negl Trop Dis; 2011 Nov; 5(11):e1385. PubMed ID: 22102922 [TBL] [Abstract][Full Text] [Related]
5. An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection. Cheng G; Liu L; Wang P; Zhang Y; Zhao YO; Colpitts TM; Feitosa F; Anderson JF; Fikrig E PLoS One; 2011; 6(7):e22786. PubMed ID: 21818390 [TBL] [Abstract][Full Text] [Related]
6. Transgenic Expression of Human C-Type Lectin Protein CLEC18A Reduces Dengue Virus Type 2 Infectivity in Cheng L; Liu WL; Tsou YT; Li JC; Chien CH; Su MP; Liu KL; Huang YL; Wu SC; Tsai JJ; Hsieh SL; Chen CH Front Immunol; 2021; 12():640367. PubMed ID: 33767710 [TBL] [Abstract][Full Text] [Related]
7. Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2. Olmo RP; Ferreira AGA; Izidoro-Toledo TC; Aguiar ERGR; de Faria IJS; de Souza KPR; Osório KP; Kuhn L; Hammann P; de Andrade EG; Todjro YM; Rocha MN; Leite THJF; Amadou SCG; Armache JN; Paro S; de Oliveira CD; Carvalho FD; Moreira LA; Marois E; Imler JL; Marques JT Nat Microbiol; 2018 Dec; 3(12):1385-1393. PubMed ID: 30374169 [TBL] [Abstract][Full Text] [Related]
8. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus. Luplertlop N; Surasombatpattana P; Patramool S; Dumas E; Wasinpiyamongkol L; Saune L; Hamel R; Bernard E; Sereno D; Thomas F; Piquemal D; Yssel H; Briant L; Missé D PLoS Pathog; 2011 Jan; 7(1):e1001252. PubMed ID: 21249175 [TBL] [Abstract][Full Text] [Related]
10. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Pan X; Zhou G; Wu J; Bian G; Lu P; Raikhel AS; Xi Z Proc Natl Acad Sci U S A; 2012 Jan; 109(1):E23-31. PubMed ID: 22123956 [TBL] [Abstract][Full Text] [Related]
11. Immune response-related genes associated to blocking midgut dengue virus infection in Aedes aegypti strains that differ in susceptibility. Caicedo PA; Serrato IM; Sim S; Dimopoulos G; Coatsworth H; Lowenberger C; Ocampo CB Insect Sci; 2019 Aug; 26(4):635-648. PubMed ID: 29389079 [TBL] [Abstract][Full Text] [Related]
12. JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. Chowdhury A; Modahl CM; Tan ST; Wong Wei Xiang B; Missé D; Vial T; Kini RM; Pompon JF PLoS Pathog; 2020 Aug; 16(8):e1008754. PubMed ID: 32776975 [TBL] [Abstract][Full Text] [Related]
13. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Troupin A; Londono-Renteria B; Conway MJ; Cloherty E; Jameson S; Higgs S; Vanlandingham DL; Fikrig E; Colpitts TM Biochim Biophys Acta; 2016 Sep; 1860(9):1898-909. PubMed ID: 27241849 [TBL] [Abstract][Full Text] [Related]
14. Identification and functional analysis of C-type lectin from mosquito Aedes albopictus in response to dengue virus infection. Gao S; Xu H; Li H; Feng X; Zhou J; Guo R; Liang Z; Ding J; Li X; Huang Y; Liu W; Liang S Parasit Vectors; 2024 Sep; 17(1):375. PubMed ID: 39232769 [TBL] [Abstract][Full Text] [Related]
15. Immune priming with inactive dengue virus during the larval stage of Aedes aegypti protects against the infection in adult mosquitoes. Vargas V; Cime-Castillo J; Lanz-Mendoza H Sci Rep; 2020 Apr; 10(1):6723. PubMed ID: 32317699 [TBL] [Abstract][Full Text] [Related]
16. A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission. Sri-In C; Weng SC; Chen WY; Wu-Hsieh BA; Tu WC; Shiao SH Insect Biochem Mol Biol; 2019 Aug; 111():103181. PubMed ID: 31265906 [TBL] [Abstract][Full Text] [Related]
17. Human C5a Protein Participates in the Mosquito Immune Response Against Dengue Virus. Londono-Renteria B; Grippin C; Cardenas JC; Troupin A; Colpitts TM J Med Entomol; 2016 May; 53(3):505-512. PubMed ID: 26843451 [TBL] [Abstract][Full Text] [Related]
18. The Runtuwene LR; Kawashima S; Pijoh VD; Tuda JSB; Hayashida K; Yamagishi J; Sugimoto C; Nishiyama S; Sasaki M; Orba Y; Sawa H; Takasaki T; James AA; Kobayashi T; Eshita Y Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053895 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of Aedes aegypti Aag2 cells in response to dengue virus-2 infection. Li MJ; Lan CJ; Gao HT; Xing D; Gu ZY; Su D; Zhao TY; Yang HY; Li CX Parasit Vectors; 2020 Aug; 13(1):421. PubMed ID: 32807211 [TBL] [Abstract][Full Text] [Related]
20. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. Chotiwan N; Andre BG; Sanchez-Vargas I; Islam MN; Grabowski JM; Hopf-Jannasch A; Gough E; Nakayasu E; Blair CD; Belisle JT; Hill CA; Kuhn RJ; Perera R PLoS Pathog; 2018 Feb; 14(2):e1006853. PubMed ID: 29447265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]