These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 34054920)
41. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
42. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. Muniyappan S; Rayan AXA; Varrieth GT J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852 [TBL] [Abstract][Full Text] [Related]
43. A Multi-Task Representation Learning Architecture for Enhanced Graph Classification. Xie Y; Gong M; Gao Y; Qin AK; Fan X Front Neurosci; 2019; 13():1395. PubMed ID: 31998065 [TBL] [Abstract][Full Text] [Related]
44. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. Wu G; Liu J; Wang C BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383 [TBL] [Abstract][Full Text] [Related]
45. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations. Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722 [TBL] [Abstract][Full Text] [Related]
47. KG-Predict: A knowledge graph computational framework for drug repurposing. Gao Z; Ding P; Xu R J Biomed Inform; 2022 Aug; 132():104133. PubMed ID: 35840060 [TBL] [Abstract][Full Text] [Related]
48. Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations. Zhong Y; Shen C; Xi X; Luo Y; Ding P; Luo L Artif Intell Med; 2023 Nov; 145():102665. PubMed ID: 37925217 [TBL] [Abstract][Full Text] [Related]
49. MFIDMA: A Multiple Information Integration Model for the Prediction of Drug-miRNA Associations. Guan YJ; Yu CQ; Qiao Y; Li LP; You ZH; Ren ZH; Li YC; Pan J Biology (Basel); 2022 Dec; 12(1):. PubMed ID: 36671734 [TBL] [Abstract][Full Text] [Related]
50. iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm. Zheng K; You ZH; Wang L; Guo ZH Comput Struct Biotechnol J; 2020; 18():2391-2400. PubMed ID: 33005302 [TBL] [Abstract][Full Text] [Related]
51. IMGC-GNN: A multi-granularity coupled graph neural network recommendation method based on implicit relationships. Hao Q; Wang C; Xiao Y; Lin H Appl Intell (Dordr); 2023; 53(11):14668-14689. PubMed ID: 36340421 [TBL] [Abstract][Full Text] [Related]
52. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121 [TBL] [Abstract][Full Text] [Related]
53. Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA-Disease Associations Based on Multi-Source Data. Li G; Wang D; Zhang Y; Liang C; Xiao Q; Luo J Front Genet; 2022; 13():829937. PubMed ID: 35198012 [TBL] [Abstract][Full Text] [Related]
54. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction. Zhang H; Cui H; Zhang T; Cao Y; Xuan P Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136910 [TBL] [Abstract][Full Text] [Related]
55. Drug repositioning based on multi-view learning with matrix completion. Yan Y; Yang M; Zhao H; Duan G; Peng X; Wang J Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289352 [TBL] [Abstract][Full Text] [Related]
56. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation. Zhang Z; Zhu L; Yu P JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514 [TBL] [Abstract][Full Text] [Related]
57. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery. Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875 [TBL] [Abstract][Full Text] [Related]
58. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model. Le DH; Nguyen-Ngoc D Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660 [TBL] [Abstract][Full Text] [Related]
59. Multi-channel high-order network representation learning research. Ye Z; Tang Y; Zhao H; Wang Z; Ji Y Front Neurorobot; 2024; 18():1340462. PubMed ID: 38487260 [TBL] [Abstract][Full Text] [Related]
60. Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model. Xue R; Liao J; Shao X; Han K; Long J; Shao L; Ai N; Fan X Chem Res Toxicol; 2020 Jan; 33(1):202-210. PubMed ID: 31777246 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]