These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34054920)

  • 61. Bridging-BPs: a novel approach to predict potential drug-target interactions based on a bridging heterogeneous graph and BPs2vec.
    Li G; Zhang P; Sun W; Ren C; Wang L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037024
    [TBL] [Abstract][Full Text] [Related]  

  • 62. GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing.
    Zhang F; Hu W; Liu Y
    BMC Bioinformatics; 2022 Sep; 23(1):372. PubMed ID: 36100897
    [TBL] [Abstract][Full Text] [Related]  

  • 63. KGRLFF: Detecting Drug-Drug Interactions Based on Knowledge Graph Representation Learning and Feature Fusion.
    Lin X; Yin Z; Zhang X; Hu J
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul; PP():. PubMed ID: 39074014
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Construction and Analysis of Molecular Association Network by Combining Behavior Representation and Node Attributes.
    Yi HC; You ZH; Guo ZH
    Front Genet; 2019; 10():1106. PubMed ID: 31788002
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Self-Supervised Learning for Label Sparsity in Computational Drug Repositioning.
    Yang X; Yang G; Chu J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3245-3256. PubMed ID: 37028367
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.
    Xiong Z; Huang F; Wang Z; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Drug-target interaction prediction using knowledge graph embedding.
    Li N; Yang Z; Wang J; Lin H
    iScience; 2024 Jun; 27(6):109393. PubMed ID: 38952679
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Predicting associations between drugs and G protein-coupled receptors using a multi-graph convolutional network.
    Luo Y; Li S; Peng L; Ding P; Liang W
    Comput Biol Chem; 2024 Jun; 110():108060. PubMed ID: 38579550
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bridging multimedia heterogeneity gap via Graph Representation Learning for cross-modal retrieval.
    Cheng Q; Gu X
    Neural Netw; 2021 Feb; 134():143-162. PubMed ID: 33310483
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in Spaceflight.
    Manian V; Orozco-Sandoval J; Diaz-Martinez V; Janwa H; Agrinsoni C
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328027
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Graph convolution for predicting associations between miRNA and drug resistance.
    Huang YA; Hu P; Chan KCC; You ZH
    Bioinformatics; 2020 Feb; 36(3):851-858. PubMed ID: 31397851
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integrative Construction and Analysis of Molecular Association Network in Human Cells by Fusing Node Attribute and Behavior Information.
    Guo ZH; You ZH; Yi HC
    Mol Ther Nucleic Acids; 2020 Mar; 19():498-506. PubMed ID: 31923739
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction.
    Zheng J; Qian Y; He J; Kang Z; Deng L
    J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterogeneous graph inference with matrix completion for computational drug repositioning.
    Yang M; Huang L; Xu Y; Lu C; Wang J
    Bioinformatics; 2021 Apr; 36(22-23):5456-5464. PubMed ID: 33331887
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Graph Representation Approach Based on Light Gradient Boosting Machine for Predicting Drug-Disease Associations.
    Wang Y; Liu JX; Wang J; Shang J; Gao YL
    J Comput Biol; 2023 Aug; 30(8):937-947. PubMed ID: 37486669
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SADR: Self-Supervised Graph Learning With Adaptive Denoising for Drug Repositioning.
    Jin S; Zhang Y; Yu H; Lu M
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):265-277. PubMed ID: 38190661
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecule Property Prediction Based on Spatial Graph Embedding.
    Wang X; Li Z; Jiang M; Wang S; Zhang S; Wei Z
    J Chem Inf Model; 2019 Sep; 59(9):3817-3828. PubMed ID: 31438677
    [TBL] [Abstract][Full Text] [Related]  

  • 80. IPCARF: improving lncRNA-disease association prediction using incremental principal component analysis feature selection and a random forest classifier.
    Zhu R; Wang Y; Liu JX; Dai LY
    BMC Bioinformatics; 2021 Apr; 22(1):175. PubMed ID: 33794766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.